Power method with Rayleigh Quotient

Power 迭代法目錄:

  1. 基本概念

    Power iteration; inverse power method; shifted inver power method

  2. 找第二大的 eigenvalue

    deflation

  3. Rayleigh Quotient 迭代及其收斂性

    Power method with Rayleigh Quotient


假設

  1. $A$ 是一個對稱矩陣

演算法: Power method with Rayleigh Quotient

Iterate until convergence: $$ \tag{1} \begin{align} \hat{x}^{(k+1)} &= Ax^{(k)}\\
\lambda^{(k+1)} &= x^{(k)T}\hat{x}^{(k+1)}\\
x^{(k+1)} &= \hat{x}^{(k+1)}/|\hat{x}^{(k+1)}|_2 \end{align} $$


收斂性證明

由於 $A$ 是個對稱矩陣, 因此存在一組 orthonormal 的 eigenvectors $\{v_1, \cdots, v_n\}$, 使得 $v_i^Tv_j=0$ if $i\ne j$, and $v_i^Tv_i=0$.

任意給定初始值 $x^{(0)}\ne 0$, 他可以被 eigenvectors 組出來, 因此我們有 $$ x^{(0)} = \alpha_1 v_1 + \sum^n_{i=2} \alpha_i v_i, $$ 並且 $$ \tag{2}A^kx^{(0)} = \lambda_1^k\left[\alpha_1 v_1 + \sum^n_{i=2} \alpha_i \left(\frac{\lambda_i}{\lambda_1}\right)^kv_i\right]. $$ 另一方面, 從迭代式 (1) 可以看出我們一直不斷地把得到的向量 normalize, 使其為單位長, 因此我們必定有 $$ x^{(k)} = \frac{A^kx^{(0)}}{|A^kx^{(0)}|_2}. $$ 將 (2) 代入得到 $$ \tag{3} \begin{align} x^{(k)} &= \frac{\lambda_1^k\left[\alpha_1v_1 + \sum^n_{i=2}\alpha_i \left(\frac{\lambda_i}{\lambda_1}\right)^kv_i\right]}{\sqrt{\lambda_1^{2k}\left[\alpha_1v_1 + \sum^n_{i=2}\alpha_i \left(\frac{\lambda_i}{\lambda_1}\right)^kv_i\right]^T\left[\alpha_1v_1 + \sum^n_{i=2}\alpha_i \left(\frac{\lambda_i}{\lambda_1}\right)^kv_i\right]}} \\
&= \frac{\left[\alpha_1v_1 + \sum^n_{i=2}\alpha_i \left(\frac{\lambda_i}{\lambda_1}\right)^kv_i\right]}{\sqrt{\alpha^2_1 + \sum^n_{i=2}\alpha^2_i \left(\frac{\lambda_i}{\lambda_1}\right)^{2k}}}\\
&=\frac{\left[v_1 + \sum^n_{i=2}\left(\frac{\alpha_i}{\alpha_1}\right) \left(\frac{\lambda_i}{\lambda_1}\right)^kv_i\right]}{\sqrt{1 + \sum^n_{i=2}\left(\frac{\alpha_i}{\alpha_1}\right)^2 \left(\frac{\lambda_i}{\lambda_1}\right)^{2k}}}, \end{align} $$ 其中我們用到了 $\{v_1, \cdots, v_n\}$ 是 orthonormal basis 這個事實.

接著我們可以算 eigenvalue, 將 (3) 代入: $$ \begin{align} \lambda^{(k+1)} &= x^{(k)T}\hat{x}^{(k+1)} = x^{(k)T}(Ax^{(k)}) \\
&= \frac{\left[v_1 + \sum^n_{i=2}\left(\frac{\alpha_i}{\alpha_1}\right) \left(\frac{\lambda_i}{\lambda_1}\right)^kv_i\right]^T\left[\lambda_1v_1 + \sum^n_{i=2}\left(\frac{\alpha_i}{\alpha_1}\right) \lambda_i\left(\frac{\lambda_i}{\lambda_1}\right)^kv_i\right]}{1 + \sum^n_{i=2}\left(\frac{\alpha_i}{\alpha_1}\right)^2 \left(\frac{\lambda_i}{\lambda_1}\right)^{2k}} \\
&= \lambda_1 \frac{\left[v_1 + \sum^n_{i=2}\left(\frac{\alpha_i}{\alpha_1}\right) \left(\frac{\lambda_i}{\lambda_1}\right)^kv_i\right]^T\left[v_1 + \sum^n_{i=2}\left(\frac{\alpha_i}{\alpha_1}\right) \left(\frac{\lambda_i}{\lambda_1}\right)^{k+1}v_i\right]}{1 + \sum^n_{i=2}\left(\frac{\alpha_i}{\alpha_1}\right)^2 \left(\frac{\lambda_i}{\lambda_1}\right)^{2k}} \\
&= \lambda_1 \frac{\left[1 + \sum^n_{i=2}\left(\frac{\alpha_i}{\alpha_1}\right)^2 \left(\frac{\lambda_i}{\lambda_1}\right)^{2k+1}\right]}{1 + \sum^n_{i=2}\left(\frac{\alpha_i}{\alpha_1}\right)^2 \left(\frac{\lambda_i}{\lambda_1}\right)^{2k}} \\
&= \lambda_1 \frac{\left[1 + O \left(\epsilon^{2k+1}\right)\right]}{1 + O \left(\epsilon^{2k}\right)} \\
&= \lambda_1 + O\left(\epsilon^{2k}\right), \end{align} $$ where $\epsilon=|\lambda_2/\lambda_1|$.

因此這個迭代式, power method with Rayleigh quotient for symmetric matrix, 會是線性收斂, 並且其 rate of convergence 是 $\left(\frac{\lambda_2}{\lambda_1}\right)^2$.


Final remark

若使用基本的 power 迭代, 就是每次將得到得向量單位化, 如以下方式:

Pseudo code:

while diff > Tol
    v = A*u
    lambda = norm(v)
    u = v/lambda
end

如果 $A$ 是個對稱矩陣, 會發現這個迭代式其收斂性為 $\left(\frac{\lambda_2}{\lambda_1}\right)^2$.

這是因爲, 若 $Au=\lambda u$, $$ \|v\|_2 = \|Au\|_2 = \sqrt{(Au)^T(Au)} = |\lambda|. $$ 利用跟上面類似的推導手法即可證明收斂性為 $\left(\frac{\lambda_2}{\lambda_1}\right)^2$.


Avatar
Te-Sheng Lin (林得勝)
Professor

The focus of my research is concerned with the development of analytical and computational tools, and further to communicate with scientists from other disciplines to solve engineering problems in practice.

Related