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Abstract

Objective: We investigated fluctuations of the photoplethysmography (PPG) wave-
form in patients undergoing surgery. There is an association between the morphologic
variation extracted from arterial blood pressure (ABP) signals and short-term surgical
outcomes. The underlying physiology could be the numerous regulatory mechanisms on
the cardiovascular system. We hypothesized that similar information might exist in PPG
waveform. However, due to the principles of light absorption, the noninvasive PPG signals
are more susceptible to artifacts and necessitate meticulous signal processing. Approach:
Employing the unsupervised manifold learning algorithm, Dynamic Diffusion Map, we
quantified multivariate waveform morphological variations from the PPG continuous
waveform signal. Additionally, we developed several data analysis techniques to mitigate
PPG signal artifacts to enhance performance and subsequently validated them using
real-life clinical database. Main results: Our findings show similar associations between
PPG waveform during surgery and short-term surgical outcomes, consistent with the
observations from ABP waveform analysis. Significance: The variation of morphology
information in the PPG waveform signal in major surgery provides clinical meanings,
which may offer new opportunity of PPG waveform in a wider range of biomedical
applications, due to its non-invasive nature.

Keywords: photoplethysmography waveform, liver transplant, manifold learning,
dimension reduction, signal processing

1. Introduction1

The human cardiovascular system fluctuates over time, hence the variation of its2

signal waveform. Focusing on the arterial blood pressure (ABP) waveform, studies have3

reported that within the tens of thousands of ABP pulses from a patient undergoing4
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prolonged surgery, no two pulses are identical in terms of waveform morphology [1, 2, 3].1

Information extracted from its dynamic and complex morphology has also proven valuable2

for various applications in clinical medicine [4, 5, 6, 7, 8]. While the morphology of an3

ABP waveform cycle is influenced by wave reflections of the blood flow from the heart4

to the whole vascular tree in the human body [9], the variation of morphology (varM )5

could reflect numerous interactions between various physiological mechanisms constantly6

regulating the cardiovascular system [10]. We have recently reported its relationships7

with the patient’s clinical condition.8

The calculation of ABP varM leverages the Dynamic Diffusion Map (DDMap) algo-9

rithm, an unsupervised manifold learning technique developed to tackle the multivariate10

nature of cardiovascular waveform morphology [2, 11, 3]. This method reveals the rela-11

tionship between high-dimensional data points in a low-dimensional Euclidean space by12

constructing a weighted graph between data points and leveraging the eigensystem of a13

random walk on the graph. By treating each segment of the waveform within a heart-beat14

cycle as a data point in high-dimensional space, DDMap unveils the hidden structure of15

the data, facilitating the observation and quantification of varM information. Notably,16

the DDMap algorithm possesses the ability to reveal non-linear internal structures and17

demonstrate robustness in statistical analysis [3, 12].18

The use of the DDMap to analyze ABP waveform data during liver transplant19

surgery revealed an association between varM and the condition of patients undergoing20

liver transplant surgery, as well as their short-term surgical outcomes [10]. Building21

upon this finding and the existing literature on ABP waveform analysis [10, 3, 11], we22

hypothesized that a similar quantitative assessment of varM could be derived from the23

photoplethysmographic (PPG) pulse wave [13].24

PPG is different to ABP in the physical principal, while sharing similar pulsatile25

waveform pattern [14, 15, 16, 17]. The invasive intra-arterial blood pressure measurement26

allows for direct pressure measurement as well as waveform information in absolute unit27

via the connecting pipe principle. Hence, ABP waveform information has been used to28

assess various hidden conditions of the cardiovascular system [8, 2, 5]. On the other29

hand, non-invasive PPG relies on the relative differences in light absorption at different30

wavelengths, which requires frequent automatic adjustment in the signal processing stage31

to obtain the arterial oximeter and the pulsation waveform displayed on the monitor.32

Therefore, while the oximeter readings are indispensable in various situations of the33

clinical medicine, PPG waveform is more susceptible to interference from various external34

factors and generally considered to be less reliable [18].35

The PPG signal is susceptible to various types of artifacts [16, 19, 20], this includes36

variations in baseline and intensity of pulse dynamics caused by motion artifact and probe-37

tissue interface disturbance [14], unavoidable noise and external interference during signal38

recording (Figure 1(a)), and pulse dispersion within a patient’s signal after segmentation39

due to dynamic physiological conditions (Figure 1(b)). Technical factors such as the type40

of sensor used and the measurement site location can also affect the waveform [19, 21]. To41

elaborate on the pulse dispersion issue depicted in Figure 1(b), the ideal scenario involves42

pulses from a signal aligning neatly at the black dash line after signal segmentation to43

focus our analysis on waveform morphology, as shown in the left image of Figure 1(b).44

However, dispersion may occur in some instances, as illustrated in the right image of45

Figure 1(b).46

Nonetheless, our shift in focus from ABP to PPG is driven by the recognition that47
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(a) Example of a PPG signal with interferes by external factors.

(b) Example of two PPG waveforms with diverse pulse dispersion after signal
segmentation. In the left panel, pulses align well at the black dash line, whereas in the

right panel, pulses are dispersed along the line.

Figure 1: Illustration of artifacts in PPG signals.

non-invasive and ubiquitous PPG, as opposed to the direct intra-arterial blood pressure1

waveform exclusively in the operating room or the critical care unit in the hospital, could2

grant applications to wider biomedical situations [14, 15, 22, 23]. However, extracting3

reliable information from the PPG remains critical to achieve comparable results to ABP4

monitoring, given the numerous challenges in signal analysis. Our study prioritizes the5

development of methodologies to address these influences, followed by an evaluation of6

the effectiveness of PPG varM in relation to clinical data.7

The rest of the manuscript is organized as follows. Section 2 provides a detailed8

explanation of the procedure, starting from the acquisition of the original PPG signal to9

the quantification of signal morphology, along with the techniques employed to address the10

PPG signal artifact problems. In Section 3, we present the relationships observed between11

the quantified varM and the post-surgery clinical score system. Further discussion of12

the results is presented in Section 4, followed by the conclusion and acknowledgments in13

Sections 5 and 6, respectively.14

2. Methodology15

In this section, we elaborate the standard procedure for quantifying varM and the16

techniques employed to address PPG signal artifacts. In Section 2.1, the collected PPG17

waveform is preprocessed in order to facilitate the application of the DDMap algorithm,18

which is thoroughly elucidated in Section 2.2. Following this, Section 2.3 outlines our19

approach to quantifying waveform morphology, while Section 2.4 provides a summary of20

the standard procedure for obtaining quantitative varM. Additionally, techniques aimed21

at mitigating the influence of signal artifacts and enhancing performance are discussed in22

3
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Section 2.5. Lastly, statistical analysis and sensitivity analysis between the varM and the1

clinical scores systems is presented in Section 2.6 and Section 2.7, respectively.2

2.1. Preprocessing of PPG waveform3

The continuous physiological waveform dataset was collected from a single center4

prospective observational study between 2018 and 2021 in Taipei Veterans General5

Hospital, Taipei, Taiwan. 85 living donor liver recipients were recruited after Institutional6

Review Board approval (IRB No.: 2017-12-003CC and 2020-08-005A) and written informed7

consent obtained from each patient. The four signals of these 85 cases, including ABP,8

PPG, central venous pressure (CVP), and electrocardiogram (ECG), were collected from9

the patient monitor (GE CARESCAPETM B850, GE Healthcare, Chicago, IL) via the10

data collection software S5 Collect (GE Healthcare). This study places its focus on the11

PPG signal to assess its performance in comparison to the ABP signal.12

To obtain the waveform morphology each pulse from a continuous PPG waveform at a13

300 Hz sampling rate, each pulse is automatically identified with the fiducial point as the14

maximum of the first difference of the anacrotic phase, the ascending part of the pulse.15

To obtain a waveform segment of each pulse including the anacrotic phase and dicrotic16

phase (as shown in Fig 3), we designed 130 ms before the fiducial point as the beginning17

of the pulse until the beginning of the next incoming pulse. The whole pulse waveform18

could be isolated accordingly in most situations. To handle the inevitable noise on the19

signal data, legitimate pulse is determined automatically with a two-pass algorithm with20

the conditions including peak maximum (10), the trough minimum (-5), the pulse width21

measured at height of fiducial point (600 ms), the minimal pulse width at the height22

of fiducial point (70 ms), the minimal duration to the previouse pulse (300 ms). These23

thresholds (initial values in parentheses) would be adjusted automatically by a feedback24

mechanism. Note these values might not be applicable to PPG signal data from the25

equipment of different manufacturer as PPG signal data do not possess standard unit.26

Subsequently, pulses whose maximum is more than twice or whose minimum is less27

than twice the average pulse range, or pulses that contain long straight lines (indicating28

that no signal is detected for a long time) are regarded to be of poor quality. These pulses29

are automatically identified, removed, and replaced using linear interpolation relative30

to their temporal position. To specify the replacement step more fully, we let Z be the31

removed pulse with time location t, Zx be the nearest qualified pulse of Z with time32

location tx < t, and Zy be the nearest qualified pulse of Z with time location ty > t. Then,33

Z is replaced by
(

ty−t
ty−tx

)
Zx +

(
t−tx

ty−tx

)
Zy. Furthermore, each pulse is subtracted by its34

median as the baseline, then divided by its ℓ2-norm to increase its varM and decrease35

the difference between pulses made by artifacts when recording the waveform. Lastly,36

to adapt DDmap in the subsequent step, we need to calculate distances between pulses.37

We learned from previous studies [2, 10] that it is important to preserve the temporal38

structure within the pulse profile. Therefore rather than scaling or stretch it, we choose39

to truncate the tail so the pulses have equal length. The average PPG length was 20740

ms while the truncating length was 467 ms. It deserves to be mentioned that from the41

perspective of cardiovascular physiology, each pulse is inevitably interrupted by the next42

incoming pulse driven from the next heart beat. This naturally occurred pulse waveform43

truncation is not uniform in length (time duration) since the heart beat intervals present44

variation. In this stage of affinity matrix construction, We made them truncated uniformly45

4
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Algorithm 1 The pseudo-code of the Dynamic Diffusion Map (DDMap).
Input: X = {xi}n

i=1, q ∈ N.
Output: Ψ = {Ψi}n

i=1 ⊂ Rq.

1: Construct an affinity matrix Wij = exp(−
∥xi − xj∥2

ℓ2

ε
) xi ∈ X, and ε is the 25-th

percentile of all pairwise points in X.
2: Construct a diagonal matrix D where Dii is the i-th row sum of W .
3: Compute the SVD of D−1W = UΛV T . Preserve only the (q + 1)-largest eigenpairs,

then discard the largest one.
4: Construct the DDMap embedding Ψi : xi → eT

i UΛ for i = 1, 2, ..., n.

to offer a standard condition to preserve the subtle waveform morphologic information1

into the affinity matrix.2

Following the pre-processing steps described above, we eliminated signal artifacts3

related to misaligned pulse baselines between cases, as well as shortages and divergences4

in pulse dynamics. However, challenges persist in mitigating the modulation of pulse5

waveform due to unavoidable transient noise in the signal (Fig 1(a)). Moreover, dynamic6

physiological conditions may frequently result in atypical shapes in the ascending part of7

the pulse (Fig 1(b)), a phenomenon encountered more often than in our previous ABP8

waveform analysis [10]. This complexity further complicates the identification of the9

systolic phase mentioned earlier. These technical issues will be will be discussed in more10

detail in the subsequent paragraphs.11

2.2. Unsupervised manifold learning technique12

The successive changes in pulse morphology within each heartbeat cycle are too13

subtle and sophisticated to be observed with the naked eye. Accordingly, we treat each14

pulse as a high-dimensional data point and utilize DDMap [11] to find a low-dimensional15

representation of the point cloud to visualize the relationships of all the pulses in high-16

dimensional space. Denoting the data set as {xi}n
i=1, the pseudo-code of the DDMap17

algorithm is presented in Algorithm 1. In the algorithm, only one parameter q needs to18

be selected, which determines the dimension of DDMap embedding. We empirically set19

q = 15. Note that our input dataset X is a pulse sequence, so the output embedding Ψ20

informs the time sequence of pulses, which allows us to analyze waveform dynamics using21

DDMap embedding trajectories evolving over time.22

The DDMap algorithm works as follows. In step 1, we construct the affinity matrix23

based on a weighted graph formed on the high-dimensional dataset, where an edge is24

close to 1 if its endpoints are close to each other in the high-dimensional space, and is25

close to 0 otherwise. In step 2, we build a diagonal matrix whose diagonal elements are26

the row sums of the affinity matrix. In step 3, we perform a singular value decomposition27

on the matrix D−1W and use it to form the embedding of step 4.28

The matrix D−1W in step 3 is a transition matrix (Markov chain), since all of its29

entries are nonnegative and all of its rows sum to 1. Note that the ij-th element of a30

transition matrix represents the probability of transition in one time step from xi to31

xj on the graph, p(xi, xj). Now, we obtain the diffusion distance (DDist) pertaining to32

5
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DDMap, as1

DDist(xi, xj) :=
√ ∑

xk∈X

∥p(xi, xk) − p(xk, xj)∥2
. (1)

DDist(xi, xj) is small when there is a large number of short paths on the graph that2

connect xi and xj , and vice versa. The diffusion distance can be directly linked to the3

spectral properties as4

DDist(xi, xj) = ∥eT
i UΛ − eT

j UΛ∥. (2)

Note that the eigenvalues of D−1W is 1 = λ1 > λ2 ≥ λ3 · · · ≥ λn ≥ −1, the eigenvector5

corresponding to eigenvalue 1 is a constant vector, and an eigenvalue reflects the impor-6

tance of its corresponding eigenvector. Therefore, we may discard the first eigenvector7

and choose a proper q to embed the dataset into a much lower-dimensional euclidean8

space. Once we build the embedding as in step 4, we actually obtain an embedding9

such that the euclidean distance between pairwise points in the low-dimensional space is10

roughly equal to the DDist between those points.11

In the case when a dataset contains clusters with different densities, which most of12

the real-world dataset does, an affinity matrix using a global bandwidth in the DDMap13

algorithm may fail to present the real connectivity between points. To avoid this, local-14

scaling bandwidths [24] is used to construct a better affinity matrix instead. That is, we15

change ε in step 2 of Algorithm 1 to ∥xi −xs∥ℓ2 , where xs ∈ X is the s-th nearest neighbor16

of xi. Following the suggestion in [24] and taking into account the size of our dataset,17

we choose s = 15 when using Algorithm 1 with local-scaling. Figure 2 illustrates the18

difference between using a global bandwidth and local-scaling bandwidths in an affinity19

matrix. It is observed that the affinity between the blue points is stronger with local20

scaling compared to global scaling, and that the affinity between red points and blue21

points is relatively weaker. In this case, we can easily separate two groups of points using22

DDMap algorithm since both groups are strongly connected inside the groups and are23

poorly connected between two groups. From here on, when we mention the DDMap24

algorithm or the DDMap embedding, we means the algorithm 1 with local scaling and its’25

result.26

2.3. Calculation of varM27

The DDMap embedding and its trajectory provides a concise overview of the complex28

dynamical evolution. We further apply a moving median followed by a moving mean filter29

to obtain the trend of trajectory. Suppose a case has L pulses and its embedding points30

are {Φi}L
i=1, then the trend T of the embedding is31

Ti = 1
k

i∑
m=i−k+1

median(Φm−(k+1)/2, ..., Φm+(k+1)/2) for i = 1, ..., L, (3)

where k is chosen manually. Note that those Φi with i < 1 or i > L were removed from32

the median pool, same as for m. The fraction in front of the summation depends on the33

number of m that are summing up.34

Figure 3 demonstrates the process from continuous waveform to new representations35

(DDMap embedding) of consecutive pulses. The original continuous waveform is shown36

in panel (a), the preprocessed waveform is shown in (b), and the embedded waveform is37

6
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Figure 2: Illustration of the difference between using global scaling or local scaling in
constructing an affinity matrix. Left: A dataset containing two groups of points (red
and blue) with different densities. Middle: Affinities between data points using global
scaling. The black line between pairwise points represent the affinity between them. The
thicker it is, the stronger the affinity between those pairwise points are, vice versa. Right:
Affinities between data points using local scaling.

shown in (c). Notably, the blue case has Meld_Na score of 56, while the red case has1

Meld_Na score of 5. In figure 3(c), it is observed that a case with a high Meld_Na score2

does not manifest intense dynamical evolution of pulses, resulting in a slow evolution3

of trend points. Conversely, a case with a low Meld_Na score displays a more complex4

dynamical change, leading to a rapid evolution of trend points. Quantifying the dynamical5

evolution of trend points may unveil its correlation with the post-surgery clinical score6

system.7

By leveraging the DDMap embedding trajectory and its trend, we obtain the change8

of T for each case,9

TS := 1
L − 1

L∑
i=2

∥Ti − Ti−1∥, (4)

which captured the slow-vary drift, is calculated as the mean of distances between each10

consecutive trend points, quantifying how fast the trend evolves. The trend speed (TS)11

measures are intuitively derived from the trajectory structure to assess the amount of12

waveform dynamics.13

The trend preserved the relative slow movement component that is more relevant to14

the inner dynamics of the cardiovascular system according to our previous study [10]. As15

the fast movement part is often elicited by the variation of the venous blood returning16

to the heart due to respiratory cycle, arrhythmia such as premature contracture, atrial17

fibrillation, or even the transient motion artifact at the signal acquisition stage, the18

physiological regulation mechanisms exert controls on the cardiovascular system at the19

time scale longer than the breathing cycle [9].20

2.4. Standard procedure of obtaining varM21

First of all, we preprocess the PPG waveform into consecutive pulses as we described22

in Section 2.1. One case is removed due to the shortness of pulse length after trimming,23

7
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Case 1 Case 2

(a) Continuous waveform before preprocessing.

(b) Consecutive pulses after preprocessing.

(c) DDMap embedding of two cases. The light color paths indicate the trajectories, and
the dark color paths indicate the trends.

Figure 3: A visualization depicting the original signals of two cases without preprocessing,
the beat-to-beat pulses after preprocessing, and their DDMap embedding alongside the
trajectories and trends.
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and two cases are removed since they do not have enough legitimate pulses. Accordingly,1

there are 82 cases of neohepatic phase.2

To make the quantitative indices comparable and convenient in future applications,3

we use 85 cases of presurgical PPG data as reference baseline dataset as before [10].4

For pulses of neohepatic phase of each case, we consider them as a non-baseline dataset5

and compute them individually. A dataset that combines the baseline dataset and a6

non-baseline dataset is formed, and a DDMap embedding that contains embedding of7

baseline dataset and non-baseline dataset is obtained by running the DDMap algorithm.8

Then, we compute the trends and varM of baseline dataset and non-baseline dataset. To9

rescale varM of the final non-baseline dataset, we consider the formula10

varM∗ = varM − median(pool of TS)
IQR(pool of TS) × 25 + 60, (5)

where pool of TS contains all varM of the baseline dataset, and IQR is the abbreviation11

for interquartile range.12

2.5. Techniques and approaches for addressing PPG signal artifacts13

Regarding noise effects and beat-to-beat pulses dispersion that cannot be eliminated14

by the standard procedure, we additionally consider two techniques to address them.15

The first approach is to replace the Euclidean distance d(xi, xj) = ∥xi − xj∥ℓ2 with16

the Wasserstein-1 distance dw1(xi, xj) [25] in step 2 of Algorithm 1, which is out of17

consideration for removing the dispersion characteristic. The second technique is to18

employed the Hamming window [26] in the signal preprocessing step, which deal with19

both noise and dispersion artifacts.20

The Hamming window is defined as21

Wi := 0.54 − 0.46 cos
(

2π

(
i

w − 1 + 1
2

))
, (6)

where − w−1
2 ≤ i ≤ w−1

2 , w is an odd number. Suppose the neohepatic phase of a case22

has pulses {xi}L
i=1, then applying the Hamming window to this case means to replace23

each pulse xi by 1
w

∑(w−1)/2
j=−(w−1)/2 Wjxi+j . Note that those xi+j with i + j < 1 or i + j > L24

were removed from the summation. The fraction in front of the summation depends on25

the number of j that are summing up. Figure 4(a) shows the effect of the Hamming26

window on pulses. This technique reduces the signal noise and dispersion by considering27

not only the pulse itself, but also its nearby pulses.28

To compute the Wasserstein-1 distance between pulses, we define a level set where29

the lines are parallel to the x-axis, the y-range is set to [−0.35, 0.4], and the step size of30

each level is 0.05, that gives 150 levels in total. For pulses xi and xj , we compute the31

cumulative distribution functions Fxi
and Fxj

of their level sets, then the Wasserstein-132

distance33

dw1(xi, xj) =
150∑
t=1

∣∣Fxi
(t) − Fxj

(t)
∣∣ . (7)

Figure 4(b) depicts the potential advantage of using Wasserstein-1 distance in Algo-34

rithm 1. In the left image of Figure 4(b), the red and green lines represent non-align35

9
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(a) Example of using Hamming window technique. Left: Pulses without windowing.
Right: Pulses with Hamming window of w = 11.

(b) Example of using Wasserstein-1 distance. Left: The red and green lines are non-align
pulses, originally located at the black line. The blue line is another pulse. Right: The
level sets of the three pulses. Note that the red and green lines coincide after x = 66.

Figure 4: Illustration of the two techniques we used to address PPG signal artifacts.

pulses, originally located at the black line, while the blue line represents another pulse.1

Ideally, the distance between red and green pulses in high-dimensional space should be2

closer than the distances between both pulses and the blue pulse. This is because the varM3

of red and green pulses are identical, while the blue pulse is not. When we use Euclidean4

distance to compute the affinity matrix, the distance between red and blue pulses is 0.68,5

and the distance between green and blue pulses is 1.32. However, the distance between6

red and green pulses is 0.86, which is larger than the distance between red and blue7

pulses. Conversely, when employing Wasserstein-1 distance, the distance between red8

and blue pulses is 34.50, the distance between green and blue pulses is 52.74, and the9

distance between red and green pulses is 26.57. Thus, the Wasserstein-1 distances between10

non-align pulses is smaller than the Wasserstein-1 distances between both non-align pulses11

and the blue pulse. Notably, the right image of Figure 4(b) displays the level sets of12

the three pulses, demonstrating that the level sets of the red and green pulses are more13

similar than the one of the blue pulse, further supporting the aforementioned conclusion.14

2.6. Statistical analysis15

After obtaining varM of the neohepatic phase of all cases, the Spearman correlation16

coefficient (CC) is used to measure the linear relationship between varM and the clinical17

scores. Since the underlying distribution of the indices is unknown, the bias-corrected18

10
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and accelerated bootstrap using 100, 000 random samplings with replacement is exploited1

to establish the 95% confidential interval of each CC. Also, a test of a null hypothesis2

that the distributions underlying the samples are uncorrelated and normally distributed3

is performed, and the p-value is reported.4

To investigate the effect of the Hamming window technique, we run the procedure on5

the original dataset, which is obtained directly after the preprocessing, and on another6

dataset where the Hamming window is applied. We examine the difference between7

results of Algorithm 1 with affinity matrix using Euclidean distance and Wasserstein-18

distance. Also, we add the results of ABP signal obtained from the previous research to9

compare the similarity of presentations among ABP and PPG signals. Accordingly, there10

will be performances of five different models to discuss in this section.11

For convenient, we named the five models as follows: model 1 is the case where the12

original dataset and the Euclidean distance are used; model 2 is the case where the13

hamming window dataset and the Euclidean distance are used; model 3 is the case where14

the original dataset and the Wasserstein-1 distance are used; model 4 is the case where15

the hamming window dataset and the Wasserstein-1 distance are used; and model ABP,16

which is shown for comparing the results between ABP and PPG signals.17

We compare the varM values of five models with the revised Model for End-Stage18

Liver Disease (MELD_Na) [27, 28] and the early allograft failure (EAF) scores, including19

L-GrAFT10 [29, 30] and the EASE score [31]. These score systems has been developed20

by the combination of laboratory examination results to access the liver disease acuity21

of a patient. The higher the MELD_Na score means higher priority for liver transplant22

surgery. Similarly, higher L-GrAFT10 and the EASE scores suggest worsen outcome after23

the transplant surgery. As higher varM is associated with better condition, which means24

lower clinical scores, the theoretical perfect CC is −1.25

2.7. Sensitivity analysis26

In the whole procedure, there are two manually chosen parameters: Hamming window27

size w whenever we uses the Hamming window technique, and trend step size k when28

calculating trends. Sensitivity analysis is created to exam how variations in the uncertain29

parameters w and k affect the performances of the procedure, and for testing the robustness30

of the performance in the presence of uncertainties. Note that when there are two input31

uncertainties, it involves calculating how much the performance of procedure changes32

when we make an adjustment to one of its input variables while keeping another as a33

constant.34

3. Result35

3.1. Statistical analysis36

The results detailed in Section 2.6 are shown in Table 1. The visualization of the37

CCs and the 95% confidential intervals between varM of five models and clinical scores,38

including MELD_Na, L-GrAFT10, and EASE score, are presented in Figure 5. Note39

that the null hypothesis test is consider notable (mark as ∗) when the p-value is less than40

0.01, and is consider significant (mark as ∗∗) when the p-value is less than 0.001.41

For the four PPG models we performed, using either the technique of Hamming42

window (model 2) or Wasserstein-1 distance in the DDMap algorithm (model 3) gives43
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Figure 5: The visualization of the Spearman correlation coefficients and the 95% confi-
dential intervals between varM of five models and three clinical scores.

better results compare to the result of standard procedure (model 1). Most of the time,1

using only Hamming window is more effective than using only Wasserstein-1 distance.2

Thus, it is normal to think that using both Hamming window and Wasserstein-1 distance3

(model 4) gives the best performance, and the results do confirm this conclusion. That4

is, the performance of model 4 gives best CCs between PPG varM and all three clinical5

scores. The CCs all exceed -0.3, and the p-values are all notable or significant.6

We compare the results of best PPG model (model 4) with the results of model ABP.7

The CCs between the model 4’s varM and the model ABP’s varM are all exceptionally8

similar above our expectation, since their CC differences are only up to a gap of ±0.05.9

Note the in the case of L-GrAFT10 score, CC of model 4 even exceed CC of model ABP.10

Also, the 95% confidential intervals of model 4 are all shorter with respect to model ABP,11

which indicates a more precise CC of model 4.12

Score Model Spearman CC 95% Confidential Interval p-value

Meld_Na

1 -0.329 [-0.47, -0.16] 0.003∗

2 -0.359 [-0.50, -0.19] 0.001∗

3 -0.333 [-0.49, -0.14] 0.002∗

4 -0.384 [-0.53, -0.20] 0.00037∗∗

ABP -0.430 [-0.62, -0.21] 0.00005∗∗

L-GrAFT10

1 -0.230 [-0.39, -0.05] 0.038
2 -0.303 [-0.44, -0.14] 0.006∗

3 -0.261 [-0.44, -0.05] 0.018
4 -0.321 [-0.49, -0.11] 0.003∗

ABP -0.310 [-0.51, -0.09] 0.003∗

EASE

1 -0.261 [-0.41, -0.07] 0.019
2 -0.274 [-0.41, -0.12] 0.014
3 -0.275 [-0.44, -0.09] 0.014
4 -0.306 [-0.42, -0.15] 0.006∗

ABP -0.320 [-0.52, -0.09] 0.0033∗

Table 1: Detail of the statistical analysis.
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3.2. Sensitivity analysis1

The sensitivity analysis of these four models is used to test the effect of different2

trend step size k and Hamming window size w to the four PPG models, and to determine3

whether the varM are sensitive to the behavior of the chosen parameter. The results4

of the sensitivity analysis by the CCs between various varM indices of the four models5

and the Meld_Na score are shown in Figure 6. Note that for model 2 and 4, we first fix6

w = 0 and test the parameter k, which have the same results of testing k for model 17

and 3 respectively. Hence, we skip to show the sensitivity analysis of model 2 and 4 for8

testing the parameter k. Then, we fix k that provide the best performance and test the9

parameter w for each two models.10

The Spearman correlation between the four models of neohepatic phase and the11

Meld_Na score are statistical significant among all k from 5 to 129 (Figure 6(c)), expect12

of model 1 and model 2, which become significant from k = 9 (Figure 6(a)). The varM of13

Model 1 and 3 reaches the best correlation at k = 25 and k = 109 respectively. As for14

the Spearman correlation between model 2 and 4 and the Meld_Na score are statistical15

significant among all w from 5 to 129 (Figure 6(b) and (d)). The varM of Model 2 and 416

reaches the best correlation at w = 29 and w = 21 respectively.17

As for confirming whether the varM show smooth curve for the four models, we use all18

the differences between adjacent CCs for quantifying the smoothness of the curve. The19

result of the differences will shown in the form (a1, [a2, a3], a4), where a1 is the mean;20

[a2, a3] is the minimum and maximum; and a4 is the IQR. For parameter k of model21

1 and 2, the differences between adjacent CCs for the correlations between MELD_Na22

score and varM are (0.006, [0.0002, 0.018], 0.005); For parameter k of model 3 and 4,23

the differences are (0.006, [0.0004, 0.054], 0.003); And for parameter w of model 2 and24

4, the differences are (0.004, [0.0001, 0.014], 0.004) and (0.006, [0.0004, 0.021], 0.006)25

respectively. Note that we start from k = 9 when calculating differences for parameter k26

of model 1 and 2, since the CC of k = 5 is not statistical significant.27

The sensitivity analysis shows that all differences between adjacent CCs are small for28

the correlations between Meld_Na and the varM of the four models, indicating the varM29

of all four models achieved consistent correlation and minimal fluctuation from a wide30

range of parameters k and w. This result concludes that the derivations of the varM of31

all four models are robust and insensitive to the two input parameters.32

4. Discussion33

Our results indicate that the variation of the PPG waveform morphology correlates34

with clinical conditions at a level approaching that of ABP. It suggests that the waveform35

signal data captured from a noninvasive sensor also possess varM information, which may36

grant more applications in the future.37

4.1. Signal processing perspective38

The Hamming window suppresses the fluctuation of the PPG waveform, while the39

employment of Wasserstein-1 distance alleviate the imperfection of the automatic pulse40

data isolation. Both provide improved metric for the affinity matrix in DDMap algorithm,41

which yields the manifold to quantify the variability of morphology.42
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(a)

(b)

(c)

(d)

Figure 6: Figure (a) to (d) is the sensitivity analysis of model 1 to 4 respectively, presented
by the Spearman correlation coefficients between various varM indices and MELD_Na
score.
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The DDMap algorithm used to calculate variability of morphology possesses theoretical1

robustness[3, 12, 11], which has been demonstrated in the sensitivity analysis also[10].2

We used DDMap algorithm to extract the variation from the common part of the pulse3

waveform morphology, the anacrotic phase to the dicrotic phase [6]. Our methodology in4

this study not only improves performance but also maintains robustness as shown by the5

sensitivity analysis, which enhances applicability in the future.6

It is worth mentioning that our PPG data benefited from several favorable conditions.7

The consistent anesthetic management throughout the surgery ensured the immobilization,8

maintained the adequate fluid status of the cardiovascular system, and stabilized the9

autonomic nerve system, all of which promote a favorable signal acquisition condition. It10

is important to caution that when employing a PPG sensor for various applications, these11

factors should be carefully considered. For example, violent physiological responses could12

be elicited by events such as stressful emotion, hungry or environmental temperature on13

a healthy human. Under such condition of peripheral vascular constriction, PPG is more14

susceptible than the direct ABP.15

4.2. Biomedical perspective16

For clinical perspective, the results of PPG data show that the varM in the neohepatic17

phase is associated with favorable clinical condition, which is in consistent with the18

ABP data counterpart in our previous study[10]. As both PPG and ABP signal data19

are available during the surgery, timely assessment is an advantage over the laboratory20

examination. The variation in waveform morphology presents both in both ABP waveform21

and PPG waveform imply other physical modalities of the cardiovascular waveform signal22

could capture the information, which is intrinsic in physiology. As the pulsatile waveform23

morphology is the summation of the wave traveling and reflecting throughout the vascular24

tree, we envision the signal data captured at different sites, whether upper limbs, lower25

limbs, cervical area, or their combination could provide more versatile application to26

reveal the human body condition.27

The association between varM and clinical condition is reminiscent of heart rate28

variability (HRV). While similar at first glance, they are different in physiology. The29

mechanism underlying HRV is mainly the cardiac sympathetic nerve system and the30

vagal nerve exerting opposite effect on the pacemaker of the heart – the sinoatrial node,31

while varM could be regulated by the various controlling mechanism of the cardiovascular32

system, which could include the local blood flow regulation of several visceral organs, and33

the globalized (and possibly oversimplified) concepts of vascular tone and fluid status.34

The HRV is the variation of the instantaneous heart rate, an one-dimensional time series,35

while the successive pulse waveform is multivariate time series, which mandates our36

methodology[10]. Therefore seeing them as the extensions of the heart rate and blood37

pressure respectively, we speculate HRV has more direct association to autonomic nerve38

system while the waveform varM is more related with the cardiovascular system. Despite39

the differences, there should be intangible physiological interaction between HRV and the40

varM in cardiovascular waveform. Therefore, we anticipate that the combination of the41

two may provide a more comprehensive assessment in humans, worthy of future studies.42

4.3. Limitation and applicability43

Although our PPG results are encouraging, applying varM may encounter practical44

limitations. The PPG serving as pulse oximeter requires the conditions of adequate45
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peripheral perfusion and minimal movement during sensor data acquisition. For the best1

signal quality of PPG waveform, the requirement could be higher. On the other hand, the2

association between varM and the laboratory examination suggest a possibility assessing3

the general condition from the signal data. Oftentimes a caregiver would like to judge4

all available information to assess the latest situation for the best benefit of the patient,5

while the available information might be limited by the potential harm, the time lag, and6

the medical resource. It cost minimal based on existential PPG sensor modality while the7

varM information is imperceptible with naked eye. Our methodology could help provide8

the caregiver additional piece of information for judgement. We speculate the possibility9

in sleep medicine or the clinical condition less urgent than the critical care unit. Certainly10

future studies are required.11

5. Conclusion12

Via the quantification based on unsupervised manifold learning, beat-to-beat variation13

of waveform morphology in PPG signal during the liver transplant surgery presents14

the association with clinical conditions. Signal processing enhancements contribute to15

the accuracy and robustness of the methodology. Despite practical limitations in PPG16

signal acquisition, the quantification offers valuable additional information for clinical17

judgment, potentially supporting patient assessment in various medical contexts. Further18

research is needed to explore its broader applicability and potential impact on clinical19

decision-making processes.20
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