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Abstract
Pathogenic bacteria, including drug-resistant variants such as methicillin-resistant Staphylococcus aureus (MRSA), can 
cause severe infections in the human body. Early detection of MRSA is essential for clinical diagnosis and proper treatment, 
considering the distinct therapeutic strategies for methicillin-sensitive S. aureus (MSSA) and MRSA infections. However, 
the similarities between MRSA and MSSA properties present a challenge in promptly and accurately distinguishing between 
them. This work introduces an approach to differentiate MRSA from MSSA utilizing matrix-assisted laser desorption 
ionization mass spectrometry (MALDI-MS) in conjunction with a neural network-based classification model. Four distinct 
strains of S. aureus were utilized, comprising three MSSA strains and one MRSA strain. The classification accuracy of our 
model ranges from ~ 92 to ~ 97% for each strain. We used deep SHapley Additive exPlanations to reveal the unique feature 
peaks for each bacterial strain. Furthermore, Fe3O4 MNPs were used as affinity probes for sample enrichment to eliminate 
the overnight culture and reduce the time in sample preparation. The limit of detection of the MNP-based affinity approach 
toward S. aureus combined with our machine learning strategy was as low as ~ 8 × 103 CFU mL−1. The feasibility of using 
the current approach for the identification of S. aureus in juice samples was also demonstrated.
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Introduction

Staphylococcus aureus has been ranked as the number 
one pathogen that causes the most deaths related to 
bacterial infections globally [1]. Generally, methicillin-
resistant S. aureus (MRSA) strains are usually called 
superbugs, which have caused difficulties in treating 
patients infected with such pathogens [2]. Given that the 
antibiotics used to treat methicillin-sensitive S. aureus 
(MSSA) and MRSA are very different [3], it is vital to 
distinguish S. aureus from its drug-resistant strains. The 
standard methods that have been applied to test bacte-
ria with drug-resistance are the bacterial culture-based 
methods—antimicrobial susceptibility testing, such as 
broth dilution and disk diffusion test [4]. These meth-
ods can provide the minimum inhibitory concentration 
(MIC) of different drugs against specific bacteria [5, 
6]. However, they are time-consuming since overnight 
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culture is required. With the development of biotechnol-
ogy, polymerase chain reaction (PCR) is an alternative 
method that can be used to distinguish different S. aureus 
strains [7]. PCR can amplify specific DNA sequences 
for different strains of S. aureus. However, it requires 
specific primers for target bacteria, takes a few hours to 
complete the analysis, and requires professional person-
nel to operate the instrument. Surface plasmon resonance 
has also been used to distinguish S. aureus [8]. Neverthe-
less, its experimental steps are complicated, including the 
requirements of conducting DNA extraction and PCR. 
Analytical methods that can be used to rapidly distin-
guish MRSA from MSSA are still in high demand.

Mass spectrometry (MS) has been used to character-
ize bacteria [9–17]. Bacteria can be identified based on 
their fingerprint mass spectra in terms of their protein or 
metabolite profiles [9–17]. Matrix-assisted laser desorp-
tion/ionization (MALDI)-MS [9–13, 15–17] has been 
extensively used to detect intact bacterial cells because 
of its simplicity and speed. Unlike PCR, MALDI mass 
spectra of intact bacterial cells can be obtained in a few 
minutes. Protein profiles derived from bacteria shown in 
the MALDI fingerprint mass spectra possess excellent 
distinguishing capability in the bacterial species levels. 
However, it is still a challenge to distinguish different 
strains of bacteria. Thus, to explore suitable strategies 
that can be used to solve this challenging issue is still 
necessary. One possible solution is principal component 
analysis (PCA), which has been used to classify bacte-
ria with good identification capabilities [18, 19]. With 
the increasing reliability of machine learning technol-
ogy, various supervised learning strategies, including 
support vector machines and random forests, have also 
been applied to differentiate bacteria at the strain level, 
achieving an accuracy of around 90% [20–27]. Neverthe-
less, efforts are still required to improve the identifica-
tion power and reduce the analysis time.

Most studies stated above were focused on the exam-
ination of the bacteria obtained after overnight culture 
[20–27]. It would be desirable if the time spent on over-
night culture could be eliminated or reduced when analyz-
ing real-world samples. Thus, affinity methods that can 
be used to selectively enrich bacteria from sample solu-
tions by eliminating overnight cultures have been devel-
oped [13, 15, 28]. Magnetic nanoparticles (MNPs) such as 
functional Fe3O4 MNPs [13, 15, 28] have been extensively 
used as affinity probes in the enrichment of trace bacteria 
from sample solutions owing to their magnetism for ease 
of isolation of MNP-bacterium conjugates. Bare Fe3O4 
MNPs also exhibit affinity toward bacteria, which are rich 
in oxygen-containing functional groups. The interaction 

between bare Fe3O4 MNPs and bacteria arises from the 
high affinity between Fe3+ on the MNPs and oxygen-con-
taining functional groups (e.g., phosphates) on the bacte-
rial surfaces according to the Hard Soft Acid Base theory 
[29]. Moreover, Fe3O4 MNPs are easy to prepare and syn-
thesize [13, 15, 28], so they should be suitable probes for 
enrichment of bacteria from sample solutions for MALDI-
MS analysis. In this study, we used Fe3O4 MNPs as affin-
ity probes to enrich bacteria, followed by MALDI-MS 
analysis. To shorten the analysis time, microwave-heating 
[30–32] was used to accelerate the trapping of bacteria by 
the magnetic probes. The MS results were processed by 
using a machine-learning model. Our approach began with 
assembling a comprehensive dataset involving the MALDI 
spectra of four distinct S. aureus strains. We employ a neu-
ral network-based classification model to process the data-
set. A distinctive feature of our data lies in its nature as a 
binary classification task, albeit with four labeled catego-
ries. Therefore, we employ the quaternary classification 
model for the training task and subsequently convert the 
model’s prediction results into binary classification. The 
established dataset was utilized to examine whether the 
sample containing trace bacteria can be identified using 
this approach. Using Fe3O4 MNP-based probes against 
target bacteria under microwave-heating incubation can 
significantly reduce the analysis time from several hours 
to just a couple of minutes. The current approach can 
overcome the time-consuming overnight culture required 
for the preparation of bacterial samples. Additionally, it 
demonstrates the possibility of employing MNP-based 
enrichment of trace bacteria in real-world samples for 
rapid distinguishing between MRSA and MSSA.

Experimental section

Chemicals and reagents

Ferrous (II) chloride tetrahydrate, hydrochloric acid 
(36.5–38.0%), tris(hydroxymethyl) aminomethane (Tris), 
and Tris hydrochloride were purchased from J. T. Baker 
(Phillipsburg, NJ, USA). Acetonitrile, ammonium hydrox-
ide solution (30 ~ 33%), α-cyano-4-hydroxycinnamic 
acid (CHCA), iron (III) trichloride hexahydrate, and 
trifluoroacetic acid (TFA) were purchased from Merck 
(Darmstadt, Germany), Fluka (Charlotte, NC, USA), 
Sigma-Aldrich (St. Louis, MO, USA), Alfa Aesar (Mas-
sachusetts, USA), and Duksan (Ansan, South Korea), 
respectively. Ethanol was purchased from Echo (Miaoli, 
Taiwan), whereas pure water was purchased from Taisun 
(Changhua, Taiwan). Tryptic soy broth (TSB) was 
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purchased from Himedia (Kennett Square, PA, USA). 
Yeast extract was purchased from Alpha Biosciences 
(Baltimore, MD, USA). S. aureus (an MSSA strain) and 
methicillin-resistant S. aureus (MRSA) were obtained 
from the Tzu-Chi Hospital (Hualien, Taiwan) and pro-
vided by Prof. P.-J. Tsai (NCKU, Taiwan). The other 
two MSSA strains, including S. aureus ATCC 6538DR 
(BCRC 10823) and S. aureus ATCC 12692 (BCRC 
10831), were purchased from the Bioresource Collection 
Research Center (BCRC) (Hsinchu, Taiwan). Apple juice 
was purchased from a local shop.

Instrumentation

All the MALDI mass spectra were acquired from an Auto-
flex III MALDI-time of flight (TOF) mass spectrometer 
(Bruker Daltonics, Bremen, Germany). The mass spec-
trometer was equipped with a Nd:YAG laser with a wave-
length of 355 nm. All the samples were conducted by the 
linear TOF with the positive ion mode. The voltages on 
the mass spectrometer were set as follows: ion source 1, 
20.00 kV; ion source 2, 18.65 kV; lens, 6.80 kV. The laser 
frequency was set at 100 Hz. Bacteria were cultured in an 
incubator (Deng Yng DB60, Taipei, Taiwan) at 37 ℃. The 
optical density of bacterial suspension at the wavelength of 
600 nm (OD600) was recorded using either a Biochrom WPA 
CO8000 (Cambridge, UK) or a Biosan DEN-600 Photom-
eter (Riga, Latvia).

Bacterial culture

S. aureus (clinical, BCRC 10823, BCRC 10831, and MRSA 
clinical strains) were cultured on the agar plate containing 
TSB and yeast extract (TSBY) at 37℃ for ~ 20 h. TSBY agar 
plates were prepared by dissolving TSB (10 g), yeast extract 
(2 g), and agar (10 g) in deionized water (400 mL), fol-
lowed by sterilization and pulling to individual Petri dishes. 
Freshly harvested bacteria were used for the experiments 
in the study.

MALDI‑MS analysis of model bacteria

A couple of S. aureus colonies prepared above were mixed 
with TFA (3%, 20 µL). The resulting bacterial sample (1.5 
µL) was mixed with the MALDI matrix (1.5 µL), i.e., CHCA 
(25 mg mL−1), which was prepared in acetonitrile/3% TFA 
(2:1, v/v). The resulting mixture (1.5 µL) was deposited on 
the MALDI plate. After solvent evaporation, the sample was 
ready for MALDI-MS analysis, in which the linear TOF was 

operated with the positive ion mode. The laser frequency 
was set at 100 Hz. Each mass spectrum acquired with the 
m/z range of 3000–8000 was collected from 3000 to 10,000 
laser shots until the peak at m/z 6888 reaching the inten-
sity of ~ 2000. 63, 52, 54, and 64 mass spectra derived from 
S. aureus clinical strain, S. aureus BCRC 10823, S. aureus 
BCRC 10831, and MRSA clinical strain, respectively, were 
acquired to establish the machine learning dataset.

Using a machine learning strategy to build 
a classification model for four model S. aureus 
strains

The classification model and deep SHAP analysis were 
implemented using the Python programming language. The 
machine learning model comprises three parts. The initial 
stage involves data preprocessing, followed by utilizing a 
neural network quaternary classification model in the second 
part. Lastly, the third component involves a post-processing 
binary classification model. The first and last parts are pre-
defined and do not require training, while the classification 
model of the second part contains unknown parameters that 
need to be learned from the data. The details of the machine 
learning algorithm used to classify the four S. aureus based 
on our MALDI-MS data were provided in the Appendix I in 
Electronic Supporting Material (ESM).

Using Fe3O4 MNPs as affinity probes to trap model 
bacteria

The freshly harvested bacteria, as prepared above, were 
centrifuged at 6000 rpm for 3 min. The bacteria cells were 
rinsed with Tris buffer (5 mL, pH 6) and centrifuged at 
6000 rpm for 3 min, repeating the process for two cycles. 
After the rinse, the bacterial cells were suspended in Tris 
buffer with an OD600 equal to 1. The bacterial suspension 
was further diluted to the desired concentrations before the 
experiments. Fe3O4 MNPs were generated based on the pro-
tocol reported previously [33]. The details of the prepara-
tion of Fe3O4 MNPs were provided in the Appendix II in 
ESM. When using Fe3O4 MNPs as affinity probes against 
the model bacteria, Fe3O4 MNPs (~ 50 µg) were added to 
the sample (1 mL) containing S. aureus. The mixture was 
vortex-mixed for a few seconds and subjected to microwave-
heating (power, 180 W) for 2 min. The resulting MNP-
bacterium conjugates were magnetically isolated using an 
external magnet for approximately 5 min. The supernatant 
was then removed, TSBY (1 mL) was added, and the solu-
tion was incubated for another 4–6 h. After incubation, the 
remaining MNPs were discarded by magnetic isolation, 
whereas the remaining supernatant containing newly grown 



	 Microchim Acta         (2024) 191:273   273   Page 4 of 11

bacteria was centrifuged at 6000 rpm for 5 min, followed by 
rinse with Tris buffer (20 mM, pH 6) for four cycles. After 
rinsing, a new batch of Fe3O4 MNP (~ 30 µg) and Tris buffer 
(20 mM, ~ 0.9 mL) were added to the rinsed bacterial cells 
to have a final volume of 1 mL. The mixture was vortex-
mixed for a few seconds, followed by microwave-heating. 
The MNP-bacterium conjugates were magnetically isolated 
by placing an external magnet for 5 min to remove the super-
natant, followed by centrifugation at 6000 rpm for 5 min, 
and the supernatant was discarded. The resulting MNP-
bacterium conjugates were mixed with the MALDI matrix 
(1.5 µL). The MALDI matrix was prepared by dissolving 
CHCA (25 mg mL−1) in acetonitrile/3% TFA (2:1, v/v). The 
resulting mixture was deposited on the well on the MALDI 
plate. After solvent evaporation, the sample was ready for 
MALDI-MS analysis.

Analysis of simulated real samples

Apple juice was used to prepare simulated real samples. 
That is, 100-fold diluted apple juice samples prepared in Tris 
buffer (20 mM, pH 6) were spiked with model bacteria with 
different concentrations. The experimental steps using Fe3O4 
MNPs as affinity probes followed by MALDI-MS analysis 

were similar to those steps stated above. The resulting mass 
spectral data were input to the established database using the 
developed machine-learning strategy.

Results and discussion

MALDI mass spectra of four model S. aureus

Four S. aureus strains, including one clinical strain, BCRC 
10823, BCRC 10831, and one MRSA strain, were selected 
as the model bacteria in this study. The MIC of S. aureus 
against oxacillin has been used as the guideline to dis-
tinguish MSSA from MRSA [6]. The MICs of S. aureus 
clinical strain, BCRC 10823, BCRC 10831, and MRSA 
clinical strain toward oxacillin were 0.25, 0.25, 0.25, and 
16 μg mL−1, respectively (ESM Figure S1), whereas they 
were < 0.125, 0.5, 0.5, and 2 μg mL−1, respectively, toward 
vancomycin (ESM Figure S2). That is, these four strains 
are vancomycin sensitive, whereas S. aureus clinical strain, 
BCRC 10823, and BCRC 10831 were confirmed as MSSA. 
Figure 1 shows the representative MALDI spectra of these 
four S. aureus strains obtained from the linear MALDI-
TOF operated at the positive ion mode. The peaks at m/z 
5032, 5525, and 6888 were observed in all the mass spectra 
of these four S. aureus strains. Given that the peak at m/z 
6888 was the major peak among these bacterial strains, we 
acquired the MALDI mass spectra of individual samples 

Scheme 1   Schematic illustration of random data separating and testing process (SA stands for S. aureus)

Table 1   Model confusion matrix of testing set for four model S. 
aureus strains. SA stands for S. aureus 

Clinical 
SA
Predicted

SA 10823
Predicted

SA 10831
Predicted

MRSA
Predicted

Accuracy
(%)

Clinical 
SA

252 0 0 8 96.92

SA 10823 5 214 1 0 97.27
SA10831 7 7 203 3 92.27
MRSA 9 0 0 251 96.54

Table 2   Classification results for MSSA and MRSA

Accuracy= ((a+d)/(a+b+c+d))%; Sensitivity= (a/(a+b))%; Specific-
ity= (d/(c+d))%

MSSA predicted MRSA predicted

MSSA 689 (a) 11 (b)
MRSA 9 (c) 251 (d)
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with intensities of this peak up to ~ 2000 during MALDI-
MS analysis. It should be noted that the mass resolution 
used in the linear mode was less than 2000. Consequently, 
the m/z values derived from the same peak may have a dis-
crepancy of 1–3 amu. For example, the peak at m/z 5526 in 
Fig. 1D should be the same as the peak at m/z 5525 shown 
in Fig. 1A–C. The peak at m/z 4305 in Fig. 1C should be the 
same at m/z 4306 shown in Fig. 1A, B, and D. There was 
not a significant difference in mass spectral profiles among 
MSSA and MRSA strains. However, the relative intensity 
of ion peaks in the mass spectra varied among the strains. 
Therefore, we further employed a machine-learning strategy 
to investigate whether these different S. aureus strains could 
be distinguished from each other.

Neural network‑based classification model for S. 
aureus strains

The total number of the MALDI spectra derived from those 
four S. aureus strains was 233. Scheme 1 shows the sche-
matic illustration to describe how the data was selected and 
processed in the classification model. We used cross-valida-
tion to check the accuracy of the model.

The model was trained 20 times. At each time, the data 
was divided into training and test sets. We randomly selected 
80% of the MALDI spectra as the training dataset, while the 
remaining 20% constituted the test dataset. A classification 
model was trained using training data, whereas accuracy, sen-
sitivity, and specificity were calculated using test data. The 
final performance metrics are averaged over the 20 iterations.

Table 1 indicates that the accuracy for identifying four S. 
aureus strains, including clinical strains BCRC 10823 and BCRC 
10831, as well as the MRSA clinical strain, was 96.92%, 97.27%, 
92.27%, and 96.54%, respectively. In Table 2, MSSA and MRSA 
were classified by placing S. aureus clinical strains BCRC 
10823 and BCRC 10831 in the MSSA group. Table 3 presents 
the resulting accuracy, sensitivity, and specificity as 97.92%, 
98.43%, and 96.54%, respectively, based on the outcomes listed 

Table 3   Accuracy, sensitivity, and specificity in classifying MSSA 
and MRSA

Accuracy = ((a + d)/(a + b + c + d))%; Sensitivity = (a/(a + b))%; Speci-
ficity = (d/(c + d))%

Accuracy Sensitivity Specificity

Test results 97.92% 98.43% 96.54%

Fig. 1   Representative MALDI 
mass spectra of S. aureus A 
clinical (n = 63), B BCRC 
10823 (n = 52), C BCRC 10831 
(n = 54), and D MRSA clinical 
strains (n = 64). “n” stands for 
the number of the mass spectra 
of the individual bacterial 
strains that were acquired. One 
or two S. aureus colonies were 
mixed with 3% TFA (20 µL). 
The resulting bacterial sample 
(1.5 µL) was then mixed with 
the MALDI matrix CHCA 
(25 mg mL−1), prepared in 
acetonitrile/3% TFA (2:1, v/v). 
This mixture (1.5 µL) was 
deposited onto the MALDI 
plate. After solvent evapora-
tion, the sample was ready for 
MALDI-MS analysis using the 
linear TOF in positive ion mode
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in Table 2. These findings demonstrate that the model effectively 
predicts the target strains using the established dataset. Further-
more, the machine-learning strategy achieved high accuracy, 
sensitivity, and specificity in classifying MSSA and MRSA.

Characterization of the feature peaks

To determine the feature peaks in each strain, we used Deep 
SHapley Additive exPlanations (SHAP) to characterize the 
important peaks in the mass spectrum of each strain. Figure 2 
shows the essential features found by Deep SHAP and the 
influence of these feature peaks on each strain. Figure 3 shows 
the model SHAP value impact on model output for each strain. 
The top five feature peaks in each strain are listed below: the 
feature peaks for clinical strain were m/z 5524, 5033, 5525, 
5032, and 5526; for BCRC 10823 were m/z 4306, 5033, 5032, 
4307, and 5030; for BCRC 10831 were m/z 5034, 5035, 5033, 
5036, and 5032; and for MRSA strain were m/z 5527, 5526, 
5525, 5524, and 5528. Let us take Figure 3A as an example; 
the figure classified the data into two groups: one is the tar-
get group, i.e., MRSA, listed on the positive coordinates; the 
other one is the non-target group (clinical, BCRC 10823 and 
BCRC 10831) listed on the negative coordinates. The red 
spots denoted the feature having a significant influence in this 
group, whereas the blue spots denoted the feature having a 
low influence. The top five features in Fig. 3A were m/z 5527, 

5526, 5525, 5524, and 5528, derived from MRSA, which were 
marked with red spots at the positive coordinates. Given that 
we operated the MALDI mass spectrometer at the linear mode 
when analyzing these model bacteria, as mentioned earlier, 
the mass resolution was not good, resulting in the broad peak 
observed in Fig. 1. Thus, these discovered feature peaks were, 
in fact, derived from the same identity. That is, the feature 
peak at m/z 5525 standing for MRSA. The feature peak of S. 
aureus BCRC 10831, as shown in Fig. 3B, was m/z 5033 (m/z 
5033 ± 2). In Fig. 3C for S. aureus BCRC 10823, two feature 
peaks were apparent at m/z 4306 (i.e., m/z 4306 and 4307) and 
m/z 5033 (i.e., m/z 5033, 5032, and 5030). Notably, the pres-
ence of red color spots at m/z 4306 and blue color spots at m/z 
5033 in BCRC 10823 implies a more pronounced influence 
of the feature peaks at m/z 4306 and a comparatively lesser 
influence of those at m/z 5033. Examining the S. aureus clini-
cal strain depicted in Fig. 3D, Deep SHAP analysis revealed 
multiple characteristic peaks. However, a distinctive pattern 
emerges: all of these features exhibit blue color spots on 
positive coordinates. This outcome signifies that the machine 
learning model initially identifies spectra resembling MRSA, 
BCRC 10831, and BCRC 10823. That is, those discovered 
ions have a low influence in identifying the S. aureus clinical 
strain. Should the spectra fail to align with these three strains, 
the model subsequently classifies them as belonging to the S. 
aureus clinical strain. These feature peaks enabled the clas-
sification model to distinguish different model strains.

Using Fe3O4 MNPs as affinity probes to trap model 
bacteria

We further examined the possibility of using Fe3O4 MNPs 
as affinity probes to enrich target bacteria in the sample 
solution. Therefore, the time for overnight culture could 
be eliminated. The details of the experimental steps have 
been provided in the “Experimental section.” ESM Table S1 
shows the binding capacity of Fe3O4 MNPs against S. aureus 
clinical strain at different pH values. The result shows that 
with the increase of the pH value, the binding capacity of the 
MNPs toward S. aureus was reduced. The optimal binding 
capacity appeared at pH 5 and 6.

Figure 4A, B, and C show the MALDI mass spectra of 
MRSA clinical strain with the concentrations of OD values 
of 10−1, 10−2, and 10−3, respectively, from direct MS analysis. 
It was apparent that no peaks were found in the mass spectra. 
After MNP enrichment from the sample (1 mL) containing 
MRSA clinical strain with the concentrations of OD values of 
10−1 and 10−2, the peaks representing the target bacteria could 
be observed in the mass spectra (Fig. 4D and E). However, it 
was impossible to see any peaks when the concentration of the 
target bacteria was lowered to OD of 10−3 (Fig. 4F).

To further improve the lowest detectable concentration, 
we cultured the bacteria trapped on the MNPs for 6 h before 

Fig. 2   Mean absolute SHAP values in Deep SHAP results obtained 
from the MALDI mass spectra of four model bacterial strains. The 
sample preparation steps were stated in the legend shown in Fig. 1
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MALDI-MS analysis. The detailed experiment steps were 
described in the “Experimental section.” MRSA clinical 
strain was used as the model bacteria. Figure 5 shows the 
resultant mass spectra of the sample containing MRSA clini-
cal strain with different concentrations in terms of OD val-
ues of 10−7–10−4 obtained after using Fe3O4 MNPs as affin-
ity probes for enrichment, followed by 6-h culture. Those 

peaks marked with red m/z values were derived from MRSA. 
Apparently, the peaks representing the MRSA appeared in 
the mass spectra as the concentration of the target bacterium 
was reduced to the OD of 10−5. As the concentration of the 
target bacterium was reduced to 10−6, only one peak at m/z 
4307 derived from the MRSA clinical strain was observed in 
the mass spectrum. ESM Table S2 shows the classification 

Fig. 3   SHAP values that impact on model output for the direct 
MALDI mass spectra obtained from the samples containing A MRSA 
clinical strain (n = 64), B S. aureus BCRC 10831 (n = 54), C S. 

aureus BCRC 10823 (n = 52), and D S. aureus clinical strain (n = 63). 
The sample preparation steps were stated in the legend shown in 
Fig. 1
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Fig. 4   Direct MALDI mass spectra of MRSA clinical strain with the 
concentrations in terms of OD values of A 10−1, B 10−2, and C 10−3. 
MALDI mass spectra of the same bacterial samples (1 mL) with the 
concentrations of OD values of D 10−1, E 10−2, and F 10−3 obtained 

after using Fe3O4 MNPs (50 μg) to enrich trace target bacteria from 
the samples followed by MALDI-MS analysis. The samples were 
incubated under microwave heating for the MNP enrichment

Fig. 5   MALDI mass spectra of 
the samples (1 mL) containing 
MRSA clinical strain with the 
concentrations in terms of the 
OD values of A 10−4, B 10−5, 
C 10−6, and D 10−7 obtained 
after enriched by Fe3O4 MNPs 
(50 µg) under microwave-heat-
ing followed by 6-h culture
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result. When the samples containing MRSA have concentra-
tions in terms of OD values of 10−4 and 10−5, the established 
model can correctly identify the target bacteria, i.e., MRSA. 
However, the model failed to identify the target bacteria as 
the bacterial concentration was further reduced to the OD 
value of 10−6. It was because many feature peaks appeared 
in the resulting mass spectra of the samples containing the 
target bacteria with a high concentration, whereas few peaks 
were observed in the resulting mass spectra of the samples 
containing a low concentration of target bacteria. These 
results indicated that the lowest detectable concentration 
of MRSA clinical strain could be reduced to the concen-
tration with the OD value of ~ 10−5 (~ 4 x 104 CFU mL−1) 
after enrichment, followed by a 6-h culture. The detection 
limit of the approach was estimated to be approximately 
~8 × 103 CFU mL−1 (OD of 1 =  ~ 4 × 109 CFU mL−1) [34] 
by considering the peak at m/z 4307 (a signal -to-noise ratio 
(S/N) of 15), representing MRSA (Fig. 5B, the concentration 
of MRSA = OD of ~ 10−5) based on an S/N of 3.

Real sample analysis

We then examined the feasibility of using the developed 
method to characterize target bacteria in the simulated real 

sample. A 100-fold diluted apple juice by Tris buffer (pH 6) 
was spiked with MRSA clinical strain with different con-
centrations and treated by our developed method, the same 
as that used to obtain Fig. 5. Figure 6 shows the resulting 
MALDI mass spectra. Many feature peaks, including m/z 
4307, 5032, 5303, 5524, 5525, and 6888 (marked in red) that 
were discovered by DEEP SHAP, were observed (Fig. 3). 
The data obtained in Fig. 6 were processed using the estab-
lished dataset based on the developed machine learning 
model. ESM Table S3 shows the machine learning results 
for identifying target bacteria using the established machine 
learning model. The identity of the target bacteria could be 
correctly identified even though the concentration of MRSA 
clinical strain was reduced to the OD value of 10−5. The 
results indicated the potential of using the developed method 
to analyze target bacteria in complex samples.

Comparison of our approach with the existing 
methods

ESM Table S4 shows a list comparing the existing methods 
[21, 23–26, 35–37] with our approach. Although our method 
required a 6-h incubation time after MNP enrichment, all 
the existing methods [21, 23–26, 35–37] required 12–24 h 

Fig. 6   MALDI mass spectra 
of the 100-fold diluted juice 
samples (1 mL) containing 
MRSA clinical strain with the 
concentrations in terms of the 
OD values of A 10−4, B 10−5, 
C 10−6, and D 10−7 obtained 
after enriched by Fe3O4 MNPs 
(50 µg) under microwave-heat-
ing followed by 6-h culture. The 
peaks marked with red text were 
derived from MRSA
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before MALDI-MS analysis could be carried out. That 
is, MNP enrichment can be used to effectively reduce the 
entire time for sample preparation. Nevertheless, the current 
method still requires a 6-h culture for the bacterial samples 
with their OD <  ~ 10−2 (= ~ 107 CFU mL−1)) (cf. Figure 4 
and Fig. 5), to obtain sufficient bacterial cells for MALDI-
MS analysis and correct identifications by our machine 
learning strategy. Thus, further efforts should be devoted to 
the reduction of the sample preparation time. Moreover, our 
method has a relatively low LOD, i.e. ~ 8 × 103 CFU mL−1 
compared with the existing methods [21, 23–26, 35–37]. 
The accuracy of our method was 92–97%, which was rela-
tively good, compared with most of the existing methods 
[21, 23–26, 35, 36].

Conclusions

Machine-learning strategies have been used to effectively 
distinguish different bacteria based on the MALDI mass 
spectra of intact bacterial cells. Nevertheless, time-consum-
ing overnight culture is usually required prior to MS analy-
sis. In this study, we have developed a method that combines 
affinity based-MS with a machine-learning strategy to distin-
guish MRSA from MSSA. Fe3O4 MNPs were demonstrated 
to be useful affinity probes that could be used to effectively 
enrich trace bacteria from the sample solution within 2 min 
under microwave-heating. Therefore, overnight culture time 
could be further reduced to 6 h for correctly identifying trace 
bacteria from the sample solution. Our machine-learning 
model demonstrated commendable classification prowess, 
yielding high accuracy levels for each S. aureus strain. We 
found distinctive feature peaks associated with each strain 
using the Deep SHAP methodology. Based on our results, 
the developed Fe3O4 MNP-based affinity MALDI-MS com-
bined with a deep learning strategy provides a new method 
to effectively reduce the entire analysis time, which is the 
main advantage over the existing methods. Enrichment of 
target bacteria with the concentration ≧ ~ 107 CFU mL−1 
followed by MALDI-MS analysis can be completed within 
10 min. However, the current method still requires 6-h cul-
ture for the bacteria samples with the concentration lower 
than 107 CFU mL−1 to obtain enough cells for MALDI-MS 
analysis and accurate identifications with our machine learn-
ing strategy. Thus, efforts are still needed to further reduce 
the time in the sample preparation. Therefore, it will be pos-
sible for on-site detection of pathogenic bacteria.
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Appendix I 

1. Appendix – Neural network-based classification model 

1.1. Data preprocessing 

In the first stage, we aimed to normalize the mass spectrum intensity data for each S. aureus 

and extract representative values. The intensity of each data was normalized to one, and a max-

pooling process was performed to obtain integer intensity between 3000 and 8000.   

 

1.2. Multiclass classification model 

We used a feedforward fully-connected neural network as the model. The dimension of 

the input layer is 5001, which is consistent with the number of input intensities. The output 

layer has four units to implement quaternary classification. At the last layer, the results are 

passed into a softmax function to obtain positive values with sum one, and the output class is 

the one with the most significant magnitude. 

For model training, we utilize the conventional cross-entropy loss function and employ the 

Adam optimizer.  

1.3. Binary classification model 

To obtain a binary classification model, we added a layer to the output of the trained 

quaternary classification model. This layer does not require training, and its purpose is simply 

to condense quaternary classification into binary classification.  

1.4. Validation 

We used cross-validation to verify the robustness of the model. In each experiment, we 

randomly selected 80% of the data as the training set and the remaining 20% as the test set. The 

final accuracy of our model is the average of 20 experiments. 

 

1.5. Feature importance 

We used Deep SHAP [Lundberg, Scott M and Lee, Su-In, A Unified Approach to 

Interpreting Model Predictions, NIPS (2017), pp.4765–4774] to analyze the model and to find 

the important features. In the deep SHAP analysis, the mean absolute SHAP value illustrates 

the importance of each feature, and the sign of the SHAP value signifies which class the feature 

is most crucial for.  
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Appendix II   

Additional Experimental Details 

Synthesis of Fe3O4 MNPs 

Iron (Ⅱ) chloride (0.49 g) and iron (Ⅲ) chloride (0.67 g) were initially dissolved in 

deionized water (25 mL) in a double-necked flask. The air in the double-necked flask was 

pumped out, followed by putting a balloon filled with nitrogen gas on one neck. Aqueous 

ammonia (33%, 25 mL) was slowly injected into the flask from the other sealed neck using a 

syringe connected to a syringe pump with a flow rate of 0.4 mL min-1. The solution in the flask 

was continuously stirred at room temperature for 2 h, with all processes carried out under 

nitrogen protection. The generated Fe3O4 MNPs were aggregated on the wall of the vial using 

an external magnet (~4000 Gauss). The supernatant was then removed. The resulting Fe3O4 

MNPs were washed with deionized water (20 mL  1) and ethanol (20 mL  3). Subsequently, 

the MNPs were suspended in ethanol (40 mL) and stored in a refrigerator at 4 oC until use. 

  



S-4 

 

Table S1. The binding capacity of Fe3O4 MNPs toward the S. aureus at different pH values. 

pH value 5 6 7 8 9 

Binding capacity 

(CFU mg-1) 
~1.38 10

10

 ~1.38  10
10

 ~1.2  10
10

 ~1.08  10
10

 ~7.2  10
9

 

 

Table S2. Classification of the target bacteria using our machine learning strategy. “O” denotes 

that data was hit on the right one, whereas “X” indicates that the results were incorrect. 

 

Samples Results 

MRSA (OD 10-4) O 

MRSA (OD 10-5) O 

MRSA (OD 10-6) X 

MRSA (OD 10-7) X 

 

Table S3. Identification of the target bacteria from the simulated real sample using our machine 

learning strategy. “O” denotes that the data was hit on the right one, whereas  

“X” indicated that the results were incorrect.  

  

Samples Results 

MRSA (OD 10-4) O 

MRSA (OD 10-5) O 

MRSA (OD 10-6) X 

MRSA (OD 10-7) X 
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Table S4. List of comparisons between the current work and the existing 

studies.  
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Figure S1. Corresponding photographs of the microdilution results by using oxacillin as the 

antibacterial agent against four model S. aureus strains, including (A) S. aureus clinical strain, 

(B) S. aureus BCRC 10823, (C) S. aureus BCRC 10831, and (D) MRSA. The red squares 

indicate where the determined MICs are. The highest and lowest concentrations were labeled 

on the top of the photographs to represent the 2-fold series dilution. The cartoon illustration 

showed the OD value obtained in each well1. Tests 1-3 indicate three replicates.  
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Figure S2. Corresponding photographs of the microdilution results by using vancomycin as the 

antibacterial agent against four model S. aureus strains, including (A) S. aureus clinical strain, 

(B) S. aureus BCRC 10823, (C) S. aureus BCRC 10831, (D) MRSA clinical strain. The red 

squares indicate where the determined MICs are. The highest and lowest concentrations were 

labeled on the top of the photographs to represent the 2-fold series dilution. The cartoon 

illustration showed the OD value obtained in each well1. Tests 1-3 indicate three replicates.  
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