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A B S T R A C T   

Coffee is a daily essential, with prices varying based on taste, aroma, and chemical composition. However, 
distinguishing between different coffee beans is challenging due to time-consuming and destructive sample 
pretreatment. This study presents a novel approach for directly analyzing single coffee beans through mass 
spectrometry (MS) without the need for sample pretreatment. Using a single coffee bean deposited with a solvent 
droplet containing methanol and deionized water, we generated electrospray to extract the main species for MS 
analysis. Mass spectra of single coffee beans were obtained in just a few seconds. To showcase the effectiveness of 
the developed method, we used palm civet coffee beans (kopi luwak), one of the most expensive coffee types, as 
model samples. Our approach distinguished palm civet coffee beans from regular ones with high accuracy, 
sensitivity, and selectivity. Moreover, we employed a machine learning strategy to rapidly classify coffee beans 
based on their mass spectra, achieving 99.58% accuracy, 98.75% sensitivity, and 100% selectivity in cross- 
validation. Our study highlights the potential of combining the single-bean MS method with machine learning 
for the rapid and non-destructive classification of coffee beans. This approach can help to detect low-priced 
coffee beans mixed with high-priced ones, benefiting both consumers and the coffee industry.   

1. Introduction 

From the busy streets in a big city to the quiet mountainous regions 
in the countryside, coffee is a common beverage that fuels the daily lives 
of millions. It is no wonder why it is one of the most profitable products 
in the world, with coffee exports propelling economic development in 
many countries in Latin America, Africa, and Asia (Utrilla-Catalan et al., 
2022). The price of coffee varies greatly and depends on various factors, 
such as species, taste, aroma, flavors, and processing methods (Do 
Carmo et al., 2020). Even the degree of roasting determines the taste and 
aroma of coffee, with longer roasting times leading to more bitterness 
(Münchow et al., 2020). Although the exact reasons for bitterness 
remain to be fully understood, the destruction of sugar and the 
appearance of chlorogenic acid lactones and phenylindanes (Münchow 

et al., 2020; Gigl et al. 2021) have been considered as possible causes. 
However, with the high prices of some coffee beans, it is not sur

prising to hear about adulteration with lower-priced ones (Cheah and 
Fang, 2020). For example, palm civet coffee or kopi luwak, which are 
processed by the Asian palm civet through its intestinal tract and 
collected from its defecations, is one of the most expensive coffees in the 
world (Muzaifa et al., 2019). Because coffee beans look quite similar 
after processing at a similar roast degree, distinguishing beans based on 
their outlooks is difficult, and experts have difficulty identifying high- 
priced coffee that is adulterated with a limited number of low-priced 
ones. The taste and aroma of coffee are generally derived from the 
chemical composition of its beans, which is the basis of its classification 
according to bean quality. Suitable analytical methods are helpful as 
they provide the chemical information of different coffee beans. Thus, 
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analytical methods such as ultraviolet–visible absorption spectroscopy 
(Belay et al., 2008), electrochemical methods (Wada et al., 2021; Tomac 
et al., 2020), chromatographic methods (Yashin et al., 2017), liquid 
chromatography coupled with mass spectrometry (MS) (Gigl et al. 2021; 
Farag et al., 2023), gas chromatograph coupled with MS (Farag et al., 
2023), paper spray ionization MS (Garrett et al., 2013), and nuclear 
magnetic resonance spectroscopy (Gigl et al. 2021; Farag et al., 2023) 
have been used to characterize and classify coffee beans. However, most 
methods require time-consuming and labor-intensive extraction pro
cedures with destruction methods prior to detection by analytical tools 
(Garrett et al., 2013; Münchow et al., 2020; Gigl et al. 2021; Farag et al., 
2023). If individual coffee beans can be examined one-by-one without 
the need to perform time-consuming and tedious sample pretreatment 
steps, informative chemical information from single coffee beans can be 
rapidly obtained. This should make it possible to find low-priced coffee 
beans mixed with high-priced ones. Therefore, exploring analytical 
methods for single-coffee bean analysis could be invaluable for quality 
control. 

Ambient ionization MS allows for the direct analysis of samples in 
their native environment, with or without minimal sample pretreatment 
steps (Takats et al., 2004; Hiraoka et al., 2007; Hsieh et al., 2011; Garrett 
et al., 2014; Wleklinski et al., 2015; Meher and Chen, 2015a; Meher and 
Chen, 2015b; Rosa et al., 2016; Wu et al., 2017; Huang et al. 2022). For 
instance, desorption electrospray ionization (DESI)-MS and easy 
ambient sonic spray ionization (EASI) have been used to directly analyze 
intact green Arabica coffee beans, conducting in situ extraction and 
ionization for MS analysis (Garrett et al., 2014; Rosa et al., 2016). 
Additionally, polarization-induced electrospray ionization (PI-ESI) has 
been demonstrated as a straightforward ionization method, which re
quires neither a high-voltage power supply nor gas for assisting the 
ionization of analytes (Meher and Chen, 2015a; Meher and Chen, 
2015b). Using PI-ESI, a droplet of solvent deposited on an intact coffee 
bean should be able to extract main compositions from the coffee bean 
and generate electrospray for instantaneous MS analysis. Although 
coffee beans are poor dielectric materials, their dielectric features can be 
raised to a certain extent after being deposited with a small droplet of 
solvent. This method should allow the rapid and informative chemical 
analysis of individual coffee beans, making it invaluable for quality 
control. 

For classification strategies, the emergence of processing MS data 
using machine learning approaches (Zhou and Zare, 2017; Kantz et al., 
2019; Xie et al., 2020; Hung et al., 2021; Lassen et al., 2021; Yang et al., 
2021; Bonetti et al., 2022; Caporaso et al., 2022; Gebreyes GG 2021) has 
recently attracted considerable attention. One strategy is the ensemble 
tree model, which has been successfully applied to classify individual 
cells (Xie et al., 2020) and discover personal information from latent 
fingerprints (Zhou and Zare, 2017). Given that the Universal Approxi
mation Theorem (Cybenko, 1989) guarantees the existence of an 
optimal solution, this study uses a one-hidden-layer neural network as 
the classification model. Based on the results obtained from single coffee 
bean MS analysis, neural network-based machine learning was used to 
accelerate the coffee bean classification. For the trained network model, 
deep SHapley Additive exPlanations (SHAP) (Lundberg and Lee, 2017) 
was used to seek important features in explaining the classification 
strategy of the network. 

2. Experimental section 

2.1. Reagents and materials 

Arabica coffee beans containing 8 different sources were purchased 
from illy (Italy). Non-arabica coffee beans were obtained from Central 
and South America. Palm civet coffee beans, i.e. kopi luwak, were ob
tained from Indonesia. Potassium chloride was purchased from Fluka 
(St. Gallen, Switzerland). Sodium formate was purchased from J. T. 
Baker (Phillipsburg, NL, USA). Methanol was purchased from Aencore 
(Box Hill, Australia), whereas deionized water was obtained from Taisun 
(Taiwan). 

2.2. Instrumentation 

Single coffee bean mass spectra were obtained using a Bruker Dal
tonics AmaZon SL ion trap mass spectrometer (Bremen, Germany). 
Bruker Daltonics micrOTOF Q II mass spectrometer (Bremen, Germany) 
was used to obtain the exact masses of target ions. The inner diameter of 
the ion transfer capillary in ion trap mass spectrometer and micrOTOF Q 
II mass spectrometer was ~ 0.024 in. (= ~0.061 cm) and 0.0194 in. (=
~0.049 cm), respectively. The outer diameter of the ion transfer 

Scheme 1. Cartoon illustration of the setup of the single coffee bean MS method.  
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capillary was ~ 0.256 in. (= ~0.657 cm). The length of the metal 
extension tube (inner diameter: ~ 1.0 mm; outer diameter: ~1.5 mm) 
adapted to the orifice of the mass spectrometer was ~ 4 cm. Photographs 
were obtained using a Sage Vision SG-210X camera (New Taipei City, 
Taiwan). 

2.3. In situ extraction and ionization 

A coffee bean was placed close to (~1 mm) the inlet of the mass 
spectrometer first followed by switching on the mass spectrometer. 
Scheme 1 shows the cartoon illustration of the setup. Coffee beans were 
randomly selected from the coffee-bean containers. A droplet of solvent 
(~10 µL) containing methanol and deionized water (3:1, v/v) was 
deposited on the surface of the coffee bean. Mass spectra were acquired 
immediately after the deposition of the solvent droplet. The voltage 
applied on the orifice of the mass spectrometer was set to − 4500 V and 
operated at the positive ion mode. The temperature of the ion transfer 
capillary was set to 200 ◦C. The number of the ions set at the ion charge 
control was 70,000, whereas the maximum acquisition time was set to 
100 ms when conducting a single coffee bean analysis. 

2.4. Data pre-processing 

The intensity of the mass spectrum of each coffee bean was pre
processed, first, normalized so that the mean was equal to unity, and 
second, a max-pooling procedure was applied to get a representative 
value for each integer intensity between 200 and 500. The details were 
described in Supporting Information (SI) Appendix 1.1. 

2.5. Classification using neural network 

We use a one-hidden-layer neural network as the model. The input 
layer consists of 301 neurons, the hidden layer has 50 neurons, and the 
number of neurons in the output layer is equal to the number of clas
sification classes. The output vector of the network is converted using 
the softmax function to a vector of values between 0 and 1, which pre
sents the probability of each class. The network is trained using the 
cross-entropy loss, and the training process is accomplished by the Adam 
algorithm. To verify the robustness of the proposed algorithm, we 
applied the repeated random sub-sampling validation, namely, we 
validated the accuracy of the results by averaging over 20 experiments. 
In each experiment, we randomly took four-fifths of the samples as the 
training set and the rest as the testing set. After a model was trained, we 
used deep SHAP to find the important features. These found features 
were further validated by constructing again a one-hidden-layer neural 
network (with 50 neurons in the hidden layer) that has the found fea
tures as input, and we then checked the classification performance of 
such a model. SI Appendix 1.2–1.5 shows the details of classification of 
our MS data using neural network. 

2.6. Identification of the features by MS/MS analysis 

To know the identity of the features found from the machine learning 
results, coffee beans were extracted off-line. That is, five coffee beans 
were vortex-mixed in the solvent (2 mL) containing of methanol and 
deionized water (3:1, v/v) for 10–20 s followed by removing the coffee 
beans and adding the other five coffee beans to the same solvent. The 
resultant solvent was directly injected to the conventional electrospray 
ion source coupled with the ion trap mass spectrometer for MS/MS 
analysis by a syringe operated by a syringe pump with a flow rate of 0.5 
mL/h. The voltage applied to the orifice of the mass spectrometer was 
set to − 4500 V, whereas the temperature of the ion transfer capillary 
was set to 200 ◦C. The number of ions set at the ion charge control was 
100,000, whereas the maximum acquisition time was set to 200 ms. 
Target ions were selected with a mass window of ± 0.6 amu. The exact 
masses of the discovered features were obtained by using the qTOF. 
When operating in positive ion mode, the voltage applied to the orifice 
of the mass spectrometer was set to − 4500 V. The temperature of the 
ion transfer capillary was set at 200 ◦C. Sodium formate was used as the 
internal calibration standard for obtaining the exact masses of target 
ions. 

3. Results and discussion 

3.1. Single coffee bean MS analysis 

To analyze a single coffee bean by MS, we used a droplet of micro- 
sized solvent to extract the main composition from a single coffee 
bean in situ. A Taylor cone was initialized when putting the single coffee 
bean deposited with a droplet solvent close to the inlet of the mass 
spectrometer applied with high voltage. Methanol/deionized water (3:1, 
v/v; 10 μL) was used as the in situ extraction solvent and electrospray 
solvent. Fig. 1A shows the photograph of a coffee bean with light roast 
deposited with a droplet of the solvent placed close to the inlet of the 
mass spectrometer applied with − 4.5 kV. Apparently, a Taylor cone was 
generated and clearly observed in the photograph therein. Fig. 1B shows 
the resulting mass spectrum. The inset shows the photograph of the 
representative photograph of the coffee bean with pale brown. The 
peaks at m/z 377 and 393, derived from the sodium and potassium 
adducts of caffeoylquinic acid (Moon et al., 2009; Li et al., 2020; Montis 
et al., 2022), while the peak at m/z 381 was derived from the potassium 
adduct of disaccharide (e.g., sugar) (Portillo and Arévalo, 2022), which 
dominated the mass spectra. Unsurprisingly, there were ions derived 
from caffeoylquinic acid and disaccharide since they are the main 
compositions in the coffee beans (Moon et al., 2009; Li et al., 2020; 
Montis et al., 2022). Given that the coffee bean used in this experiment 
was a light roast, the disaccharide could remain its chemical structure. A 
dark-roast coffee bean (inset photograph in Fig. 1C) was also used as the 
sample. Due to dark-roasting, the coffee bean became dark brown and 

Fig. 1. (A) Photograph of the single coffee bean-based MS analysis. Mass spectra of the single coffee bean obtained from the (B) light and (C) dark roast non-Arabica 
coffee beans. The insets in Panels (B) and (C) show the corresponding photographs of the coffee beans. 
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looked oily. Fig. 1C shows the resultant mass spectrum. The ions at m/z 
377 and 393 were still observed in the same mass spectrum. However, 
the ion at m/z 381 derived from the potassium adduct of disaccharide 
disappeared. Because the coffee bean was dark roasted, the disaccharide 
structure was destroyed due to the high roast temperature. Moreover, a 
new peak at m/z 471, which was derived from the protonated βN- 
behenoyl-5-hydroxytryptamide [Chemspider], was observed in the 
resultant mass spectrum. These results indicate that ions derived from 
the main composition of single coffee beans can be readily observed in 
the resulting mass spectra using the developed approach. Accordingly, in 
situ extraction followed by ionization can be carried out on a single 
coffee bean simultaneously, with the coffee bean itself used as the 
ionization source. The approach used herein shows that light and dark 
roast coffee beans can be easily distinguished through its ions at m/z 381 
and 471, respectively. The appearance of the peak at m/z 381 in the 
mass spectrum of the coffee bean indicated that it was not highly roas
ted. The peak at m/z 471 was observed in the mass spectrum of the dark- 
roast coffee bean using our single coffee bean MS analysis approach. 

3.2. Analysis of palm civet coffee beans and non-palm civet coffee beans 

Abovementioned results show the feasibility of using our developed 
method to distinguish coffee beans with different roast degrees. 
Nevertheless, dark-roast coffee beans can be easily distinguished based 
on their outlooks according to their brownness level and oily surface (cf. 
inset in Fig. 1C). To further demonstrate the usefulness of our approach, 
palm civet coffee (kopi luwak) and non-palm civet coffee were used as 
the model samples. All the coffee beans were roasted in a medium level. 
Fig. 2A shows the representative mass spectrum of a single palm civet 
coffee bean (medium roast): the ions at m/z 319, 347, 363, 369, 377, 
393, 405, 421, 441, and 463 dominated the mass spectrum of the bean. 
Fig. 2B shows the representative mass spectrum of a single non-Arabica 
coffee bean: here, the mass spectrum was dominated by the peaks at m/z 
353, 369, 377, and 393. Fig. 2C shows the representative mass spectra of 
single Arabica coffee bean: the mass spectrum was dominated by the 

peaks at m/z 319, 369, 377, and 393. The peaks at m/z 377 and 393, 
derived from the sodium and potassium adducts of caffeoylquinic acid 
(Moon et al., 2009; Li et al., 2020; Montis et al., 2022), respectively, 
were observed in all the mass spectra of these coffee beans. These two 
peaks had also been previously observed in Fig. 1. Because caffeoyl
quinic acid is a main component of coffee beans and is involved in the 
bitterness of the beverage (Moon et al., 2009; Münchow et al, 2020; Li 
et al., 2020; Montis et al., 2022), these peaks appearing in the mass 
spectra of these coffee beans with medium roast were unsurprising. 
More peaks, especially at m/z > 400, were observed in the mass spec
trum of the single palm civet coffee beans. This was understandable 
given that the coffee bean was treated by a palm civet. To accelerate the 
classification of palm civet and non-palm civet coffee, a one-hidden- 
layer neural network was further used for classification. 

3.3. Classification of MS data by the neural Network-based Machine 
learning strategy 

Palm civet coffee beans and two non-palm civet coffee beans 
(Arabica and non-Arabica) as the model samples, applying beans from 
three different sources for classification. Sixty coffee beans from each 
coffee bean source were analyzed using the single coffee bean MS 
analysis approach. The total number of mass spectra was 180. Sup
porting Information (SI) lists the details of the machine learning algo
rithm that was applied to classify palm civet and non-palm civet coffee 
beans. 80% of the mass spectral results were randomly sampled and 
trained on the training set, while the rest of the results (20%) were used 
as a testing set (Scheme 2). The data was randomly sub-sampled 20 

Fig. 2. Single coffee bean mass spectra of (A) palm civet coffee bean, (B) non-Arabica coffee bean, and (C) Arabica coffee bean. All the coffee beans were roasted in 
the medium degree. The insets in Panel (A)-(C) show the corresponding photographs of the coffee beans. 

Scheme 2. Illustration of the random sub-sampling validation process.  

Table 1A 
Model confusion matrix of the accumulated testing sets in the cross-validation.   

Predicted luwak Predicted non-luwak 

Luwak 237 (a) 3 (b) 
Non-luwak 0 (c) 480 (d)  
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times for cross-validation using the model to determine the accuracy. 
Results showed that the accuracy for identifying palm civet coffee beans 
was at 98.75% (Table 1A), whereas it was 100% for identifying non- 
palm civet coffee beans. The accuracy, sensitivity, and selectivity of 
cross-validation were 99.58%, 98.75%, and 100%, respectively 
(Table 1B). Results therefore indicated that palm civet coffee can be 
identified using the developed strategy yielding high accuracy, sensi
tivity, and selectivity. 

3.4. Characterization of the discovered features 

Deep SHAP was then used to find important features from the data. 
Fig. 3 shows the important features in Deep SHAP. The top features used 
to distinguish palm civet coffee from non-palm civet coffee were m/z 
463, 405, 441, 421, 347, 409, and 363. These discovered features are 
rare peaks found in the mass spectra of coffee beans. qTOF was then used 
to further determine the exact masses of the top 7 features (463, 405, 
441, 421, 347, 409, and 363). Table 2 shows the list of the experimental 
exact mass, the possible molecular formulae, theoretical m/z, and the 
mass error from theoretical values. Some of the molecular formulae 
contain alkali metal ions, i.e. sodium and potassium ions. Expectedly, we 
found that most of these ions possessed hydroxyl groups based on our 
MS/MS analysis (Fig. 4). The MS/MS spectra were mainly dominated by 
the fragments (marked blue) with a loss of a water from the target ions. 
SI Figs. S2–S8 show the MS/MS spectra of these discovered features, 
their possible chemical structures following Chemspider [https://www. 
chemspider.com/], and the possible fragments. However, we are unable 

to identify the exact chemical structures due to a few possibilities for 
each feature based on the results shown in Fig. 4, Table 2, and SI 
Figs. S2–S8. Moreover, the information related to the metabolites from 
palm civet coffee beans is very limited, especially for the molecular 
weights higher than 300 Da. Some of the possible molecular formulae 
contain sulfur (SI Figs. S3-S6). Sulfur containing molecules are 
commonly found in aroma molecules in fruit peels (McGorrin, 2011; 
Cannon and Ho, 2018). Because palm civets eat coffee cherries and 
digest these cherry peels completely in their intestinal tract, these 
molecules were present in the mass spectra of palm civet coffee beans. 
Further efforts must hence be devoted to determine the chemical 
structures of these features. Nevertheless, the classification of palm civet 
coffee from regular ones using the developed single coffee bean MS 

Table 1B 
Model accuracy/sensitivity/specificity of the accumulated testing sets in the 
cross-validation.   

Accuracy (%) Sensitivity (%) Specificity (%) 

Cross validation 99.58 (717/720) 98.75 (237/240) 100 (480/480) 

*Accuracy (%) = a + d/a + b + c + d; Sensitivity (%) = a/a + b; Specificity (%) 
= d/c + d. 

Fig. 3. Deep SHAP results. (A) Mean absolute SHAP values and (B) SHAP values impact on model output.  

Table 2 
List of the possible molecular formulae and their theoretical masses of the 
discovered features.  

Experimental 
exact mass (m/z) 

Possible 
molecular 
formula 

Theoretical 
mass (m/z) 

Mass error to the 
theoretical values 
(ppm)  

463.2774 C21H34N8O4 +

H+

463.2781 − 1.51  

C23H40N2O6 +

Na+
463.2784 − 2.15  

405.2441 C22H38O3S + Na+ 405.2439 0.49  
441.1588 C22H24N4O4S +

H+

441.1596 − 1.81  

421.2159 C22H38O3S + K+ 421.2178 − 4.5  
C22H32N2O4S +
H+

421.2161 − 0.47  

347.2041 C13H26N6O5 +

H+

347.2043 − 0.57  

C21H30O2S + H+ 347.2045 − 1.15  
409.3196 C25H42N2O +

Na+
409.3195 0.24  

C22H46N2O2 + K+ 409.3196 0  
363.1726 C22H28O2 + K+ 363.1726 0  
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analysis with the machine learning technique approach proved to be 
highly successful. 

4. Conclusions 

To distinguish high quality coffee beans from low quality ones 
without performing any sample pretreatment remains a challenge. Most 
existing analytical methods require destructive extraction methods 
using time-consuming steps prior to the analysis. This study demon
strates a novel method using single coffee bean MS analysis to analyze 
intact coffee beans one-by-one without performing any destructive 
extraction steps. This allows it to be both simple and straightforward. 

The setup of the ionization method is easy: a single coffee bean depos
ited with a droplet of solvent is directly used as the ionization source, 
where the solvent is then used to simultaneously extract the main 
composition of the coffee bean and facilitate the formation of the Taylor 
cone to generate electrospray containing analytes for MS analysis. The 
results show the feasibility of using the MS method to characterize single 
coffee beans, one-by-one, in just a few seconds. Additionally, a machine 
learning strategy was employed to classify MS data. Among various 
available strategies, the neural network model was chosen because of its 
strong expressibility and its ability to guarantee the optimal solution. 
Owing to the speed of MS analysis and fast data processing, this 
approach can be potentially used for high-throughput analysis. 

Fig. 4. MS/MS spectra of the peaks at (A) m/z 463, (B) m/z 405, (C) m/z 441, (D) m/z 421, (E) m/z 347, (F) m/z 409, and (G) 363 derived from the extracts of palm 
civet coffee beans. 
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Currently, the quality of coffee beans mainly depends on the judgment of 
baristas. For simplicity and speed, our approach may be useful in 
ensuring the quality of coffee beans in the coffee industry. 

In addition, we believe that the developed single coffee bean MS 
approach can be extended to the analysis of single objects of interest 
based on the similar concept demonstrated in this work. 
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1. Appendix - Classification with machine learning 

1.1. Data preprocessing 

The intensity of the mass spectrums of each coffee bean was preprocessed, first, 

normalized so that the mean was equal to unity, and second, a max-pooling procedure 

was applied to obtain a representative value for each integer intensity between 200 and 

500. Fig. S1 shows an example. 

(A)                               (B)  

 

Fig. S1. Preprocessing of the intensity of mass spectra. (A) Original and (B) processed 

data. 

We then went through the detail of how the preprocessing was done step by step, 

with adding a process of removing the background m/z values. Given a data 𝑋 =

{(𝑙𝑖, 𝑥𝑖)}𝑖=1
𝑑  , where 𝑙𝑖   are the m/z values and 𝑥𝑖   are the intensity values, we first 

calculate the mean of the data by 

μold(𝑋) =
1

𝑑
∑ 𝑥𝑖

𝑑

𝑖=1

. 

Suppose that the background values occur at 𝑖 = 𝑖1, 𝑖2, ⋯ , 𝑖𝑚, then the identity values 

are assigned to this mean value, that is 

𝑥𝑖𝑗
← μold(𝑋),  for 𝑗 = 1,2, ⋯ , 𝑚. 

Next, we calculated the mean after replacing the background intensity values by 

μ(𝑋) =
1

𝑑
∑ 𝑥𝑖

𝑑

𝑖=1

. 

Then, we did a normalization on the intensities such that the mean is equal to unity, that 

is 
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𝑥𝑖 ←
𝑥𝑖

μ(𝑋)
,  𝑖 = 1,2, ⋯ , 𝑑. 

Finally, we did a max-pooling such that we obtained the intensity value for 200 to 500. 

Let’s say the new data is 𝑋̂ = {(𝑗, 𝑥̂𝑗)}𝑗=200
500 . Define round(⋅) to be the function that 

does round half to even (bankers’ rounding or Gaussian rounding), and let 𝑆𝑗 =

{𝑖 | round(𝑙𝑖) = 𝑗}, each 𝑥̂𝑗 is defined as 

𝑥̂𝑗   =   {
𝑚𝑎𝑥
𝑖∈𝑆𝑗

 {𝑥𝑖},  if 𝑆𝑗 ≠ ∅,

0,               if 𝑆𝑗= ∅,
 

for j = 200,201, ⋯ ,500. 

 

1.2. Binary classification using neural networks 

1.2.1. Model 

We used a one-hidden-layer neural network (with 50 neurons in the hidden layer) 

as the model, given as 

𝑍 = 𝑊2σ(𝑊1𝑋 + 𝑏1) + 𝑏2, 

where 𝑋 ∈ ℝ301  is the input intensity, 𝑊1 ∈ ℝ50×301  and 𝑊2 ∈ ℝ2×50  are the 

weight matrices, 𝑏1 ∈ ℝ50  and 𝑏2 ∈ ℝ2  are the bias vectors, and σ is the sigmoid 

activation function. The output of the neural network 𝑍 = [𝑧0, 𝑧1]𝑇 is then pass into a 

softmax function to obtain a single value 𝑝 as 

𝑝 =
𝑒𝑧0

𝑒𝑧0 + 𝑒𝑧1
. 

One should note that 𝑝 is a value between 0 and 1 that presents the probabilities of the 

input intensity 𝑋 being in class 0. The probability of 𝑋 being in class 1 is simply 1 −

𝑝. 

1.2.2. Training 

We used the cross-entropy loss function: 

Loss =
1

𝑁
∑(𝑡𝑗 log(𝑝𝑗) + (1 − 𝑡𝑗) log(1 − 𝑝𝑗))

𝑁

𝑗=1

, 
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where N is the number of training data, 𝑡𝑗 ∈ {0,1} and 𝑝𝑗  are the ground truth label 

and the model prediction, respectively, for the jth data. The training process is 

accomplished by Adam algorithm. 

1.3. Validation 

To verify the robustness of the proposed algorithm, we applied the repeated random 

sub-sampling validation; we then randomly took four-fifths of the sample as the training 

set and the rest as the testing set in each experiment. We validated the accuracy of the 

results by averaging over 20 experiments. 

 

1.4. Feature importance 

After a model was trained, we used Deep SHAP [Lundberg, Scott M and Lee, Su-

In, A Unified Approach to Interpreting Model Predictions, NIPS (2017), pp.4765–4774] 

to find the important features. The mean absolute SHAP value showed the importance 

of each feature, while the sign of SHAP value indicated which class the feature was 

most important for. 

 

1.5. Validation of the important features 

Using the results of the Deep SHAP analysis shown in Figure 3, we identified the 

important features according to their mean absolute SHAP values. To validate the 

effectiveness of the found features, we constructed again a one-hidden-layer neural 

network model but with its input to be some of those found features, not the whole 

intensity data. Table S1 lists the results. With just 8 feature inputs, we achieved a high 

accuracy of 99.44, which validated the validity of the features found. 

Table S1. Testing accuracy of the model. 

selected feature inputs accuracy 

(%) 

463,405,441,421,347,409,363 99.31 

463,405,441,421,347,409,363,479 99.44 
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2. Additional Figures  

 

Fig. S2. (A)-(B) MS/MS spectra of the feature at m/z 463 derived from palm civet 

coffee beans and its possible chemical structures. 
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Fig. S3. (A)-(C) MS/MS spectra of the feature at m/z 405 derived from palm civet 

coffee beans and its possible chemical structures. 
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Fig. S4. (A)-(B) MS/MS spectra of the feature m/z 441 derived from palm civet coffee 

beans and its possible chemical structures. 

 

 
 

Fig. S5. MS/MS spectrum of the feature m/z 421 derived from palm civet coffee beans 

and its possible chemical structures. 
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Fig. S6. (A)-(D) MS/MS spectra of the feature at m/z 347 derived from palm civet 

coffee beans and its possible chemical structures.  
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Fig. S7. (A)-(D) MS/MS spectra of the feature at m/z 409 derived from palm civet 

coffee beans and its possible chemical structures. 
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Fig. S8. MS/MS spectrum of the feature at m/z 363 derived from palm civet coffee 

beans and its possible chemical structure. 
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