
J. Fluid Mech. (2021), vol. 924, A26, doi:10.1017/jfm.2021.626

Thin liquid films in a funnel
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We explore flow of a completely wetting fluid in a funnel, with particular focus on contact
line instabilities at the fluid front. While the flow in a funnel may be related to a number
of other flow configurations as limiting cases, understanding its stability is complicated
due to the presence of additional azimuthal curvature, as well as due to convergent flow
effects imposed by the geometry. The convergent nature of the flow leads to thickening
of the film, therefore influencing its stability properties. In this work, we analyse these
stability properties by combining physical experiments, asymptotic modelling, self-similar
type of analysis and numerical simulations. We show that an appropriate long-wave-based
model, supported by the input from experiments, simulations and linear stability analysis
that originates from the flow down an incline plane, provides a basic insight allowing an
understanding of the development of contact line instability and emerging length scales.

Key words: contact lines, fingering instability, thin films

1. Introduction

Thin liquid films with fronts involving contact lines and their instabilities are relevant
to applications in a number of different fields, ranging from nanoscale to macroscale
films where instabilities are driven by a combination of various body forces, surface
tension and wettability, see the reviews of Oron, Davis & Bankoff (1997) and Craster &
Matar (2009). Significant progress has been reached by using a long-wave approximation,
which simplifies considerably the analysis of thin film flows and their stability. In the
context of thin films on a macroscale, the set-up involving a completely wetting film of
constant thickness flowing down an incline has been understood reasonably well. For such
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Figure 1. (a) Solidworks wire sketch of the 47◦ funnel. Note that the technical drawing mentions 45◦; printing
imperfections can somewhat modify the opening angle, which is therefore always measured after printing.
(b) Photo of the experimental set-up including the latex sheet, stopper and green-light illumination. The
beaker that collects the polydimethylsiloxane (PDMS) is visible underneath the funnel. Here, S indicates the
radius of the stopper used as initial barrier that releases the fluid. (c) Solidworks drawing of the 35◦ funnel.
(d) Coordinate system variables used in the description of the fluid behaviour (solid lines). The light-blue
surface delineated with the dotted line indicates the initial fluid volume and position as created by the stopper
at distance rc0 (dotted arrow) from the origin of the funnel geometry; the thickness of the film referenced in the
text, hi, is measured in the vertical direction (therefore, along the short stopper dimension). The dashed arrow
indicates the flow direction of the thin film. The arrow denoted by g indicates the direction of gravity.

a configuration, linear stability analysis (LSA) carried out in a moving reference frame
leads to the dispersion relation, which shows stability for large wavenumbers, and predicts
the most unstable wavelength (specifying the distance between emerging fingers), which
results from the balance between destabilizing gravity and stabilizing surface tension
forces (Troian et al. 1989; Bertozzi & Brenner 1997). However, as soon as some of the
simplifying assumptions are removed, understanding the instability becomes much more
complicated.

In the present paper, we focus on the funnel geometry, see figure 1, where initially a fixed
amount of wetting fluid is deposited around a perimeter and then allowed to evolve due to
gravity. Despite its relevance to a number of practical applications, funnel flow, to the best
our knowledge, has not yet been carefully analysed, in particular in the context of front
instabilities. Funnel flow involves geometry-induced convergence, and the influence of this
convergence, as well as of azimuthal curvature on instability development, is unknown. For
the purpose of understanding the stability properties of a film in a funnel, it is useful to
discuss some of the many limiting configurations that could be related to that considered.
If the film is deposited at a sufficient distance from the centre, the azimuthal curvature is
small, and one could relate the problem to a finite volume of fluid deposited on an incline
plane. Even that problem is, however, difficult to analyse due to a time-dependent base
state (Goodwin & Homsy 1991; Gomba et al. 2007). The limiting case of the opening
angle α = 90◦ could be thought of as a flow down a cylinder (in a direction of the cylinder
axis) (Smolka & SeGall 2011; Mayo, McCue & Moroney 2013), which shows fingering
type of instabilities. Fingering instability is also observed for the flow down a surface of a
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cylinder or a sphere (Takagi & Huppert 2010; Balestra et al. 2019), a set-up which shows
similarity to fingering observed during spin coating (Melo, Joanny & Fauve 1989; Fraysse
& Homsy 1994). Another set-up of interest is flow in a Hele–Shaw geometry where surface
geometry plays a role in instability development (Miranda et al. 2000; Brandão, Fontana
& Miranda 2014). In the limit α = 0◦, one could think of the problem of closing a hole in a
film on a horizontal substrate (Diez, Gratton & Gratton 1992), which is stable (Backholm
et al. 2014; Bostwick, Dijksman & Shearer 2017; Lv, Eigenbrod & Hardt 2018; Zheng et al.
2018). Another possibly relevant limit is that of a liquid filament which, on a horizontal
substrate, becomes unstable by a mechanism that could be related to the Rayleigh–Plateau
instability of a liquid jet modified by the presence of a substrate (Davis 1980). This problem
is, however, difficult to analyse in the limit of zero contact angle that we consider here
(Diez, González & Kondic 2009). Perhaps a closer analogy is a fluid ring on a horizontal
substrate, which indeed may become unstable (Gonzalez, Diez & Kondic 2013). However,
the fact that there is no body force inducing converging flow makes this set-up significantly
different from the funnel flow. The converging nature of the flow in a funnel leads to
thickening of the film, and since the film thickness is important in determining both the
speed of spreading and the instability mechanism itself, it is expected to influence the
instability considerably. We should also point out that the problem opposite to our setting,
a rising film in a glass, was considered recently (Dukler et al. 2020).

Various limiting cases suggest many possible routes for analysis of the instability
evolution. In the present paper, we start by discussing our experimental results in § 2,
and then follow in § 3 by considering appropriate models for describing spreading of a
film on curved substrates. In § 4 we first discuss the generic features of the funnel flow, by
discussing similarities and differences to the flow down an incline, with particular focus
on the regime such that a useful input can be obtained by applying a self-similar approach.
Then, in § 4.2 we apply the insights obtained in § 4.1 to interpret the experimental results,
with particular focus on the instability development. Section 5 concludes the main part
of the paper. LSA for a liquid film of constant flux flowing down an incline is briefly
discussed in Appendix A. Supplementary materials available at https://doi.org/10.1017/
jfm.2021.626 provide some technical details, experimental movies as well as the complete
list of experimental results.

2. The experiment

We designed funnels with Solidworks and three-dimensional (3-D) printed them on a
fused-deposition 3-D printer. Figure 1 shows the details of the funnels. Inside the funnel,
we glued a thin latex sheet, which helped create a smoother surface. The funnel was placed
between a green-light source and a beaker that collected the liquid flowing out of the funnel
opening. To prepare the experiment, a 3-D printed stopper of radius S = 6 cm was inserted
in the funnel, see figure 1(b). A known volume of fluid, V , was then carefully deposited
around the funnel using a syringe; the fluid spread itself evenly in the cavity around
the stopper. This created an initial film of height hi (measured in the vertical direction),
which we used as our control parameter to simplify interpretation of the results (note that
V ≈ πSh2

i / tan α). For every trial, the funnel and stopper were cleaned and levelled before
deposition. For small values of the opening angle, α, one needs a prohibitively large V
to keep hi in a range that is also appropriate for larger α, so for such angles we chose
smaller values of hi. To start the flow, the stopper was raised and flow was observed.
A fluorescent dye (pyrromethene) was added to the fluid stock solution, which enhanced
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the contrast between the moving fluid and the latex sheet under influence of the green
light. We used PDMS of density ρ = 9.6 × 102 kg m−3, viscosity μ = 1 × 103 mPa s
and surface tension γ = 21 mN m−1; for more details regarding PDMS properties see
Dijksman et al. (2019). Note that PDMS can be assumed to wet latex as the critical
surface–vapour surface tension of typical latex types ∼50 mJ m−2 is much higher than
the low surface tension of PDMS ∼20 mJ m−2 (Ho & Khew 2000; Zhang et al. 2018).
This means that the spreading parameter is larger than 0 and thus the contact angle is
zero, without hysteresis (see e.g. the book by De Gennes, Brochard-Wyart & Quéré 2004).
Elastocapillary effects, such as discussed by Marchand et al. (2012), were neglected as
the ratio of liquid–vapour surface tension to elastic modulus of the latex rubber was much
smaller than the thickness of the latex sheet ∼1 mm. Fluid flow was recorded using a
high-resolution camera at 25 frames per second. The movies served both to extract the
wavelength of the developing instability and for the quantitative assessment of the flow
speeds of the relevant film features.

It should be pointed out that there were a few experimental issues that led to some
variation in the extracted experimental results that are discussed later in the text (and
denoted by error bars where appropriate). At first, the method to distribute the fluid,
while simple, may not have always led to a perfect azimuthally symmetric distribution.
Another source of error was the formation of air pockets under the thin rubber sheet
lining the funnels. Re-gluing prior to conducting experiments helped to create a surface
free of larger surface abnormalities. Conducting multiple experiments and averaging
the values helped to remedy some of these errors and reduce the error bars. More
detailed information regarding the experiments, including selected experimental movies
(supplementary movies 1–4) as well as funnel specifications (Drawing 1, Drawing2) are
available; additional movies can be found at the NJIT Capstone Laboratory web page
(Kondic 2019).

2.1. Extracting instability features
The movies allowed us to extract two main features of the instability: the number of
fingers observed, Nexp, and the onset radius of fingering, rc1. We show snapshots from
the top-view movies for four values of α to identify such features in figure 2(a–d). The
experiments for each set of parameters were repeated several times to obtain conclusive
results, which are summarized in table 1, and shows Nexp, as observed for a few different
values of α and hi. We also carried out additional experiments using PDMS of lower
viscosity, μ = 3.5 × 102 mPa s, which showed that Nexp is viscosity-independent, a point
to which we return in § 4.2. Before closing this section, we note that the rear contact line
remained essentially fixed, with the fluid thinning in its vicinity, as can be seen clearly
in the supplementary movies. This point will become relevant later when considering the
self-similar solution.

2.2. Extracting front speed
To determine the flow speed we need to extract quantitative data from the movies. In
particular, we extracted the fingertip position as a function of time. First, we needed
to know where rc1 was, the onset position of fingering. Figure 3(a) illustrates in more
detail our approach to finding this value. We defined rc1 by requiring that at the onset of
fingering, the distinct undulations were present along the entire perimeter of the fluid front.
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(a) (b)

(c) (d)

rc0

rc1

O

60° 47°

35° 11°

Figure 2. (a–d) Flow examples for the 60◦, 47◦, 35◦ and 11◦ opening angles, respectively. The width of each
image is ∼60 mm, as indicated by the dark circle that demarcates the edge of the fluid volume before onset
of the flow. See also (a) supplementary movie 1; (b) supplementary movie 2; (c) supplementary movie 3;
(d) supplementary movie 4.

α V rc0 rc1 hi Nexp
(deg.) (ml) (mm) (mm) (mm) (–)

60 2.8 120 110 ± 0.7 5 27 ± 1.2
5.4 120 112 7 23

47 4.5 88 77 ± 1.2 5 21 ± 0.8
8.9 88 75 ± 2.3 7 16 ± 0.5

35 6.9 73 57 5 16
11 6.7 61 47 ± 3 2.5 10 ± 2.8

9.7 61 50 3 10
17.8 61 43 4 6

Table 1. Experimental results for the flow in a funnel as the opening angle and the initial film thickness, hi,
are varied (the latter is controlled via varying fluid volume, V). The columns are the funnel angle, α, the initial
fluid volume, V , the initial distance to the funnel centre, rc0, the distance at which instability is observed, rc1,
the initial film height (in the z direction), hi, and the number of fingers observed, Nexp. Errors reported are
standard deviations. If no standard deviation is reported, only one movie is available with a camera angle such
that rc1 could be extracted. Full datasets for experiments carried out also using PDMS of different viscosity, for
additional fluid volumes and recorded using different camera angles are available, see supplementary table 1.
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Figure 3. (a) Front propagation as a function of time for the setting from figure 2. The middle part shows
the onset of fingers, where they become countable and at which point we define rc1. (b) The dark front edge
allows for fingertip position tracking along lines (red) of pixels towards the centre of the funnel (orifice). (c) A
kymograph for the 60◦, hi = 5 mm case shows the tip position as a function of time. The initial part in the red
square (duration of which is approximately 4 s) features an initially constant tip displacement rate. Examples
of this initial fingertip position dynamics are shown in panel (d) for three different opening angles 60◦, 47◦
and 35◦ for the same initial hi = 5 mm. Dash–dotted lines are straight lines as a guide to the eye to show the
average tip speed for each value of α. The time window shown in panel (d) corresponds approximately to the
horizontal dimension of the red square in the kymograph shown in panel (c). Note the increase of the average
speed with a decrease of α, a point discussed further in § 4.2.

We then needed to extract the fingertip position for each finger. To that end, we defined
lines along the direction of motion of the fingers towards the funnel orifice. Figure 3(b)
shows a few of these lines as an example. The lines are shown in red; they all converged
in the funnel orifice. Along these lines, we extracted pixel values from the frames in the
movies, which for every frame yielded an intensity profile as a function of r. Due to the
dark front of the finger, every intensity profile had a clear step which could be fitted
with an error function to obtain a fingertip position as a function of time. The intensity
profiles extracted for every finger and every frame were put together to form a kymograph,
which indicated qualitatively the fingertip dynamics for the tip considered. An example
of such a kymograph is shown in figure 3(c). Note the linear part in the first few seconds
of the kymograph, and the nonlinear slowing down for later times. Figure 3(d) zooms
into the early times and confirms that the fingertip velocities were constant, and also
that they depended on the opening angle, α. This figure shows a few examples of the
fingertip position as a function of time for three different values of α. Tip positions were
as measured from the finger starting point, which was always close to, but not exactly
rc1. Counterintuitively, the initial fingertip speed was larger for smaller α, another point to
which we will return in § 4.2.

3. The model

In this section we discuss the appropriate model for a liquid film in a funnel. Consider a
funnel of opening angle α, parametrized by

(x, y, z) = (r cos α cos θ, r cos α sin θ, r sin α), r ∈ [Rl, Rr], θ ∈ [0, 2π], (3.1)
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Instabilities of a thin liquid film in a funnel

where 0 < Rl < Rr. We can then define the orthogonal unit vectors on the funnel as

e1 = (cos α cos θ, cos α sin θ, sin α), e2 = (− sin θ, cos θ, 0),

n = (− sin α cos θ, − sin α sin θ, cos α),

}
(3.2)

where n is the unit normal vector pointing inside the funnel, see figure 1(d). The principle
normal curvatures in the directions parametrized by r and θ are given by κ1 = 0, κ2 =
tan α/r. Based on the work of Roy, Roberts & Simpson (1997), the evolution of the
thickness of a thin liquid film, h, inside a funnel can be described by the following partial
differential equation:(

1 − tan α

r
h
)

ht

= − γ

3μ
∇s ·

[(
h3 − tan α

2r
h4

)
∇s

(
∇2

s h + tan α

r − tan αh

)
+ tan2 α h4

2r3 e1

]

− ρg
3μ

∇s ·
[
− sin αh3

(
1 − tan α

r
h
)

e1 − cos αh3∇sh
]

, (3.3)

where surface gradient, divergence and Laplace operators are defined by

∇sf = ∂f
∂r

e1 + 1
r cos α

∂f
∂θ

e2,

∇s · (q1e1 + q2e2) = 1
r

∂

∂r
(rq1) + 1

r cos α

∂

∂θ
(q2),

∇2
s f = 1

r
∂(rfr)

∂r
+ 1

r2 cos2 α

∂2f
∂θ2 ,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.4)

respectively. We non-dimensionalize the problem by h = a h̄, r = a r̄, t = tc t̄, where a =√
γ /ρg is the capillary length and tc = 3μa/γ is the time scale. Howell (2003) pointed

out that for a thin film such that h � r/ tan(α), the model can be simplified by neglecting
asymptotically small terms; after dropping the bars, the governing equation is given by

∂h
∂t

= −∇s ·

⎧⎪⎪⎨
⎪⎪⎩h3

⎡
⎢⎢⎣∇s

⎛
⎜⎜⎝ ∇2

s h︸︷︷︸
surface tension

+ tan α

r︸ ︷︷ ︸
substrate curvature

⎞
⎟⎟⎠ − sin αe1︸ ︷︷ ︸

tangential gravity

− cos α∇sh︸ ︷︷ ︸
normal gravity

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭.

(3.5)

For the experimental parameters given in § 2, we have a ≈ 0.15 cm and tc ≈ 0.2 s. For
consistency with the experiment, we choose the computational domain r ∈ [1, L], L =
100, θ ∈ [0, 2π] and h = O(1). The r = 1 is chosen as the domain boundary so as to
avoid the coordinate singularity at r = 0.

The computational results that we discuss in § 4 are obtained by implementing
second-order Crank–Nicolson method in time, second-order discretization in space and
Newton’s method to solve the nonlinear system at each time step, as described in detail by
e.g. Lin & Kondic (2010). To deal with the well-known issue of contact-line singularity, it
is appropriate to introduce matched asymptotic expansions to join solutions in different
length scales near the contact line, see Snoeijer & Andreotti (2013) and Sibley, Nold
& Kalliadasis (2015) for further details. One can also introduce the interface potential
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that in general gives rise to an equilibrium film thickness. This film plays the role of
a microscopic length scale that, again, has to be matched with an outer solution where
viscous forces are not important (Pismen & Eggers 2008). We, however, for simplicity
assume directly that the solid substrate is prewetted, i.e. already covered by a thin layer
of fluid. Assuming the presence of such a prewetted layer essentially removes the contact
line from the consideration. While various other models including relaxation of no-slip
boundary condition exist and could be implemented, it is known that from the macro-scale
point of view (that is, consideration of the film dynamics) what really matters is the length
scale that is introduced by a model (Diez, Kondic & Bertozzi 2001). In particular, for a
simple and well-researched constant flux flow down an incline (where a time-independent
influx leading to a fixed film thickness far behind the front is assumed), it is known that
there is a translationally invariant solution for a film moving down an incline with the
speed U that only weakly depends on the precursor film thickness, b0, as long as b0 � 1
(Bertozzi & Brenner 1997). It should be noted though that the limit b0 → 0 is singular,
which leads to a shock-like singularity; the details of the film behaviour in the presence
of a vanishingly small length scale have been considered extensively in the literature, see
e.g. Craster & Matar (2009) and Bonn et al. (2009); we do not discuss them further in the
present work.

We note that while for a flow down an incline it can be assumed that the precursor film
thickness is a constant (independent of position), for the flow in a funnel, conservation of
fluid volume requires that the flux at the inlet and outlet are the same. One simple choice
of the boundary conditions that satisfies this condition is

h(r = 1) = b0

⎛
⎜⎝

1
L

+ L cos α

1 + cos α

⎞
⎟⎠

1/3

, h(L) = b0, ∇r

(
∇2

r h
)

− cos α∇rh
∣∣∣
r=1,L

= 0.

(3.6a–c)

The precursor film thickness b(r) is obtained as the time-independent solution of the
one-dimensional version of (3.5) (where the solution is assumed to be θ -independent),
and with the boundary conditions as specified by (3.6a–c). The solution of this nonlinear
boundary value problem is found using Matlab’s ‘fsolve’.

4. Results

In this section we present the results of analysis, simulations and comparison between
theoretical predictions and experiments. In § 4.1 we focus on understanding the influence
of funnel geometry on the flow without immediately attempting to develop direct
comparison with the experiments. In this section we also discuss the insight that could
be reached based on application of a self-similar type of approach. Then, in § 4.2 we focus
on the comparison of the theoretical and the experimental results. As we will see, useful
insight can be reached by developing a connection between the funnel flow and flow down
an incline plane.

4.1. Film flow in a funnel: general considerations

4.1.1. Constant flux flow
For the incline plane flow, the best known case is the constant flux configuration and so
we start by considering such a set-up in a funnel. The initial film profile specified at t = 0
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Instabilities of a thin liquid film in a funnel

is a (smoothed) rectangular profile of the unit height as follows:

h(r, t = 0) = b(r) + 1 − b0

2
(1 + tanh(5(r − rc0))) , (4.1)

where rc0 corresponds to the front position. Figure 4(a) shows the profiles that develop
at different times. To better illustrate the influence of funnel geometry on the flow, we
also show in panel (b) the results for constant flux flow down an incline. The latter results
are obtained by solving numerically (A1) (see Appendix A), similar to those presented
by e.g. Lin & Kondic (2010), with a uniform precursor film, b(r) ≡ b0, and consistent
boundary conditions. Both sets of simulations show the formation of a capillary ridge
behind the front, as expected. The comparison of the results for the flow in a funnel and
down an incline shows that for the former, the film thickness is generally larger due to
converging flow nature. Since the speed of the front is expected to scale with the film
height as U ∝ h2 (Huppert 1982), this thickening also leads to a faster flow down a funnel
compared with the flow down an incline, see figure 4(c). After initial transients, the latter
evolves to a travelling wave moving with a constant speed, see figure 4(c,d). Within the
presently used scaling, this speed is given by U ∼ h2 sin α, see Appendix A and note
that rescaled quantities are used there. The choice of relevant film thickness, h, entering
this relation becomes more complicated for the constant volume flow, discussed in the
following.

Before proceeding with a consideration of constant volume flow, we digress briefly to
comment on the influence of precursor film thickness on the results. Figure 5 shows an
example of the results obtained for b0 = 0.005, 0.01 and 0.02. We recall that for a film
flowing down an incline plane in constant flux configuration, for larger precursor film
thickness the spreading speed is (slightly) larger, see Appendix A. The same trend is found
for the flow in a funnel, see figure 5(a,c). Figure 5(b) illustrates the steepening effect for
the precursor film itself close to the funnel centre, at small values of r.

4.1.2. Constant volume flow: self-similar approach
Next we study the spreading of a constant volume film in a funnel, focusing first on the
insight that can be reached by considering the regimes where a self-similar solution can
be formulated. For the flow down an incline, the self-similar solution (Huppert 1982)
(ignoring surface tension effects) predicts that the front speed scales as t−2/3 and the
height behind the ridge, h0, as t−1/3. The question is whether a similar approach could
be used for the funnel flow.

Let us consider only the effect of substrate curvature and tangential gravity, and neglect
all the other terms in (3.5). This simplification (valid sufficiently far behind the film front
and for opening angles which are not too small) leads to

ht = 1
r

[
rh3

(
tan α

r2 + sin α

)]
r
. (4.2)

We observe that the substrate curvature amplifies the parallel component of gravity, and
the amplification is larger when the flow is closer to the funnel centre. Next, we assume a
solution of the form

h(r, t) = T(t)H(η), η = R − r
rf (t)

, (4.3a,b)

where R specifies the position of the uphill part of the deposited fluid (assumed to be a
constant, which is a good approximation of the experiment, as discussed in § 2), rf (t) is
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Figure 4. Constant flux flow: (a) funnel, azimuthally symmetric flow; (b) incline, unperturbed flow (for
simplicity we use the same variable r for the both flows; in panel (b) r stands for the downhill coordinate).
The initial condition (dashed) for both (a,b) is specified by (4.1). The film profiles are shown at times 10, 20,
30 and 40 (solid lines). The speed (c) and the maximum height of the film (d) for the funnel flow (solid red)
and for incline plane flow (dashed blue). The dotted (black) line in panel (c) shows the flow speed for a flow
down an incline as discussed in the text; the difference between the computed and theoretical speed illustrates
the (minor) influence of the initial transient behaviour. Here, the inclination angle is α = 60◦, the initial front
position is rc0 = 80 and b0 = 0.01.

the distance travelled by the front and R − rf (t) is the position of the front, both at time t
(we drop the specific dependence on t from now on). Equation (4.2) then leads to

Ṫrf

Tṙf
H − ηH′

= T2

ṙf

[
rf

R − rf η

(
sin α − tan α

(R − rf η)2

)
H3 − 3

(
sin α + tan α

(R − rf η)2

)
H2H′

]
, (4.4)

where the over-dot notation denotes the time derivative, and primes denote the derivative
with respect to η. The solution should satisfy the volume conservation condition

2π

∫ R

R−rf (t)
rh(r, t) dr = 2πTrf

∫ 1

0
(R − rf η)H(η) dη = vc, (4.5)

where vc is the fluid volume.
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Figure 5. Constant flux flow in a funnel: influence of the precursor film thickness for azimuthally symmetric
flow. In all panels of the figure, the solid (blue), dashed (red) and dotted (black) lines correspond to b0 = 0.005,
0.01 and 0.02, respectively. (a) Film profiles at t = 45, (b) precursor films, (c) speed of the spreading front and
(d) maximum film height. Here α = 60◦ and rc0 = 80.

At early times after fluid deposition, rf � R, and at the leading order in the small
quantity rf /R we obtain

Ṫrf

Tṙf
H − ηH′ = −3cs

T2

ṙf
H2H′, (4.6)

where cs = sin α + tan α/R2, and the volume constraint at the leading order reads

Trf

∫ 1

0
H(η) dη = ṽc, (4.7)

where ṽc = vc/(2πR). We note that (4.6) and (4.7) are identical to those derived for
the incline plane problem (Huppert 1982). Simple scaling arguments give T(t) ∼ t−1/3,
rf (t) ∼ t1/3 and therefore the self-similar solution is

h(r, t) = 1√
3cs

√
R − r

t
. (4.8)

The volume conservation constraint, (4.7), gives the location of the leading edge,

rf (t) =
(

27csṽ
2
c

4

)1/3

t1/3, (4.9)

and the film height at the front,

h(r = R − rf , t) =
(

ṽc

2cs

)1/3

t−1/3. (4.10)
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Figure 6. Constant volume flow in a funnel: predictions based on self-similar approach. (a) Front position
(R − rf ), (b) front speed (drf /dt) in (4.11) and (4.12) (note log–log scale in panel (b)). Here R = 90 and ĉ =
1370, corresponding to the same funnel angle and volume used later in figure 7.

This result shows that, in the limit when the fluid front only travels a short enough distance,
the flow down a funnel is identical to the flow down an incline plane, a result which may
not be immediately obvious.

4.1.3. Constant volume flow: convergence effects
To gain some insight into the influence of the convergent nature of the funnel flow, we use
the self-similar solution specified by (4.8) as an ansatz (but one should keep in mind that
this solution is only valid for rf � R) and require that the complete volume conservation
constraint, (4.5), should be satisfied. Following this approach, we find that rf satisfies the
following equation:

2R
3

r3/2
f − 2

5
r5/2

f = ĉ
√

t, (4.11)

where ĉ = √
3csvc/2π. By taking the time derivative, we obtain the equation for the front

speed:

drf

dt
= ĉ

2(Rr1/2
f − r3/2

f )
√

t
. (4.12)

Figure 6 shows the solution for the front position (R − rf ) and the front speed (drf /dt). We
see that the convergence effect leads to acceleration of the front at later times. To analyse
this acceleration in more detail, we note that for the later stage of spreading, when the
front is close to the funnel centre, we may assume R − rf � R. For the discussion of this
regime, it is convenient to introduce the stopping time Ts = (4/(15ĉ))2 R5, at which the
fluid front reaches the funnel centre, rf (Ts) = R. We can then rewrite (4.11) as

2
3

(
1 − R − rf

R

)3/2

− 2
5

(
1 − R − rf

R

)5/2

= 4
15

√
1 − Ts − t

Ts
. (4.13)

At the leading order in the small quantity (R − rf )/R, we obtain R − rf =√
4R2/15Ts

√
Ts − t. Therefore, the front speed ṙf scales as (Ts − t)−1/2 showing that the

front is expected to accelerate when approaching the funnel centre.
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Figure 7. Constant volume flow: (a) funnel, azimuthally symmetric flow; (b) incline, unperturbed flow. The
initial condition (dashed) is the same for (a,b) and is specified by (4.14). The film profiles are shown at times 50,
100, 150, 200 and 250 (solid lines). The speed (c) and the maximum height of the film (d) for the funnel flow
(solid red) and incline plane flow (dashed blue) (note log–log scale). The dotted (black) lines in (c,d) plot the
self-similar solutions (4.9)–(4.10), respectively; note that (4.10) applies to the thickness behind the capillary
ridge, leading to an approximately constant offset to the numerical solution for the maximum height. Slight
deviation of the numerical solution from the expected scaling for very early times illustrate the minor influence
of the initial transient behaviour. Here, the inclination angle is α = 60◦, the initial front position is rc0 = 80,
w = 10 and b0 = 0.01.

4.1.4. Constant volume flow: numerical solution
Next, we study the spreading of a constant volume film in a funnel utilizing numerical
simulations. The initial film profile at t = 0 is specified by the following expression:

h(r, t = 0) = b(r) + 1 − b0

2
(tanh(5(r − rc0)) + tanh(5(rc0 + w − r))) , (4.14)

where rc0 corresponds to the front position and w determines the fluid volume. Figure 7
shows the film profiles, both for (a) funnel geometry and (b) for the same fluid volume
travelling down an incline plane. For the flow down an incline, we observe film thinning,
as expected. For the funnel flow, we observe different behaviour, with the thinning effect
significantly reduced or even inverted for the later times. As a consequence, the film in a
funnel spreads significantly faster.

Figure 7(c,d) show that the scaling laws predicted by the self-similar solution (Huppert
1982) are accurately reproduced for the constant volume flow down an incline. Regarding
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the front speed shown in figure 7(c) and ignoring transient effects for very early times,
the self-similar solution specified by (4.9) captures precisely its behaviour for early times,
including the prefactor. Regarding figure 7(d), note that here we plot numerical result for
the maximum film height, not the height behind the ridge to which the similarity solution
applies; however, since the behaviour of the two considered quantities is essentially the
same, the power law expected from the self-similar solution, (4.10), captures well the
behaviour of the maximum height for early times of the evolution, modulo an (constant)
offset.

Focusing next on the funnel flow, we note the speed-up of the fluid front for the
late times, as predicted by the self-similar solution derived in § 4.1.2. This speed-up is
not as strong as predicted (viz. figure 6b), which is not surprising since the self-similar
approach is not expected to be accurate for late times. Figure 7(d) also shows the
corresponding increase of the film height. This thickening effect, which is also relevant
for the intermediate times shown in figure 7, is responsible for the deviation from the
spreading law predicted by the self-similar solution (note deviation of the slope of the red
lines in figure 7(c,d) from the scaling expected by the self-similar solution for the flow
down an incline).

Figure 8 shows the results obtained for the constant volume flow in the funnel geometry
as the opening angle, α, is varied. The film spreads faster down a funnel characterized
by larger α, as shown in panel (a). We suspect that the tangential gravity may have a
dominant effect on the time scale of the flow; to show that this is the case, we plot the
results for the front position and maximum film height versus t sin α in panels (b and c).
We find approximate collapse of the front position curves in the panel (b), which shows
that indeed the tangential gravity plays the major role. Regarding the maximum film height
shown in panel (c), we observe that this quantity is larger for larger α, as expected since
the capillary ridge is more pronounced for such angles (we expect that this effect is also
responsible for slightly faster spreading for larger α observed in panel (b)). However, the
trend of the maximum heights is similar for all α, with the film height decreasing for early
times, while at the later times when the front reaches closer to the funnel centre, the film
height increases, see panel (c), and faster spreading is observed, see panel (b).

4.1.5. Instability development
To obtain a basic idea regarding instability development (finger formation), we discuss first
the flow down an incline plane for the constant flux configuration. In such a set-up, the base
state (for which the film thickness does not depend on the transverse coordinate), translates
down an incline at a constant speed U, as already discussed. This fact allows for carrying
out the linear stability analysis in the moving frame translating (with speed U) with the
film itself; in this frame the base state is time-independent (Bertozzi & Brenner 1997).
Appendix A briefly outlines this problem, and discusses in particular the wavenumber of
maximum growth, qm, the corresponding wavelength, λm = 2π/qm, as well as the critical
wavenumber qc, such that the wavenumbers q > qc are stable; see figure 12 in Appendix
A. The stability analysis becomes more complicated for the constant volume flow down
an incline (Gomba et al. 2007), since for that problem the base state itself is evolving,
as also illustrated in figure 7(b). For the flow in a funnel, viz. figure 7(a), an additional
complication involves the gradual thickening of the film due to convergent flow.

In § 4.2 we will consider a rather simple approach to utilize the LSA results in the incline
plane problem for a comparison with experiment; here we outline the basic aspect of this
approach, without explicit reference to the experiment. Let us consider constant volume
flow in a funnel, as shown in figure 9. When the film front has reached a prescribed position
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Figure 8. Funnel flow: constant fluid volume spreading as the opening angle α is varied. (a) Film profiles at
t = 250. The initial conditions are taken to be the same, shown by the dashed line. The position of the spreading
front and the maximum film height are shown in (b,c), respectively (note log–log scale in (c)). Here, the initial
front position is rc0 = 80, w = 10 and b0 = 0.01.
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Figure 9. Film profiles in a funnel (‘F’, constant volume) and on an incline plane (‘P’, constant flux). The
former is the film profile at t = 50 in figure 7(a). The latter is a travelling wave solution with the film thickness
behind the front corresponding to the thickness at the inclination point of ‘F’. This thickness, h0, determines
the scale that is used in the LSA.

for the considered opening angle, α, the thickness h0 is extracted from the film profile as
the thickness at the inflection point behind the capillary ridge. With the knowledge of
this characteristic thickness, h0, and the opening angle, α, we can then find a travelling
wave solution on an incline plane that has the exact same characteristic thickness; such
a solution is plotted in figure 9 as well (marked by P). The LSA results of this travelling
wave solution then give us the most unstable wavenumber. Therefore, this most unstable
wavenumber results from a combination of the information from experiments (instability
location), numerical simulations of funnel flow (providing h0) and the LSA originating
from the flow down an inline plane. In the next section, we discuss how to use a similar
approach to provide a basic understanding of the instability development in experiment.
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Figure 10. Time evolution of a film on an incline plane (P) and in a funnel (F). The initial condition is specified
by (4.14). The results are plotted at the times at which the experimentally observed instability radius, rc1, is
reached. Note that the shown range of r, 40, is the same for all figure panels. The initial volume corresponds to
that experimentally used for the film height of 5 mm for α = 60◦, 47◦ and 35◦, and of 2.5 mm for α = 11◦, see
table 1.

4.2. Film flow in a funnel: comparison with the experiment
We now proceed to the consideration of a funnel flow, but with a specific emphasis on the
comparison with the experiments. While we will modify the choice of the parameters that
we use to more closely resemble the experimentally relevant ones, for simplicity we still
keep the smoothed rectangular initial profile, with the idea that the instability takes some
time to develop, and therefore the initial film profile is not of relevance. However, we do
choose the initial film width, w, see (4.14), so as to be consistent with the experimental
fluid volume (in units of a3) by V = 2πSh0w, with S in units of a and h0 = 1. We note
that the choice that has been made in selecting the parameters (in particular, having fixed
film thickness and varying fluid volume as the opening angle α is modified) simplifies the
connection to the experiments; the price to pay is the increased complexity of the results,
in particular when discussing the trends of the results as α is modified, as we will see in
the following.

Figure 10 shows the results for both funnel simulations (denoted F) and for the
same fluid volume travelling down an incline plane (denoted P), for the fluid volumes
corresponding to the experimental ones. When comparing the thicknesses of the capillary
ridge between funnel and incline plane flow, the effects related to the convergent nature of
the funnel flow become relevant, as discussed in § 4.1.4. In particular, when considering
the change of the capillary ridge thickness as the opening angle α is varied, we need to
remember that in the simulations the volume increases as α decreases from 60◦ to 45◦ and
30◦ (to keep approximate consistency with the experiments), which leads to thicker films
and ridges. Since we are interested more in the trends than in exactly matching theory with
experiments, we keep round numbers for the angles that we use, because the differences
in the results are minor. The influence of the volume increase is visible in figure 10, where
we observe a non-monotonous dependence of the capillary ridge thickness on α.
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Instabilities of a thin liquid film in a funnel

α (deg.) w rc1 h0(rc1) qm qc λm NLSA

60 3.3 73.0 0.3 0.68 1.15 9.24 25
6.4 74.7 0.6 0.52 0.89 11.97 20

45 5.3 50.0 0.45 0.53 0.89 11.91 19
10.5 48.0 0.69 0.44 0.75 14.19 15

30 8.3 38.5 0.59 0.40 0.67 15.90 13
10 7.9 30.7 0.56 0.22 0.37 27.97 6

11.4 33.3 0.73 0.18 0.29 34.20 6
21.0 28.7 0.99 0.13 0.21 47.53 3

Table 2. Results and predictions of the linear stability analysis for the experimental fluid volumes. The
initial film thickness h0(rc0) = 1.0. The columns are as follows: α – the funnel opening angle, similar to the
experimental values, see table 1; w – the width of the initial condition in time-dependent simulations as used
in figure 10; rc1 – the position at which instability is observed in the experiments; h0 at rc1 – as obtained in the
simulations for funnel flow, see the text for details; qm – the most unstable wavenumber obtained by LSA; qc –
critical wavenumber obtained by LSA; λm = 2π/qm; NLSA – prediction for the number of fingers based on λm
and rc1. The values used for rc0 (initial front position) and those from the experiments are listed in table 1; note
that the listed values of w combined with the specified values of rc0 and h0(rc0) lead to the same fluid volume
as in the experiments.

Next we proceed with application of LSA to the present problem. To make progress,
we choose an approach that allows us to reach a basic understanding of the instability
development observed in the experiments. LSA, as already discussed, is based on the
incline plane problem and the constant flux set-up, using the film thickness behind the
capillary ridge, h0, as the appropriate scale, see figure 9. We assume that the film is
initially deposited at r = rc0, so that the fluid volume forms a circle of radius rc0 cos α.
As the film flows down a funnel, the radius of this circle, rc(t), becomes smaller, and the
film itself thins (for the chosen initial condition). To make a comparison with experiments,
we choose the characteristic thicknesses, h0, as the thickness obtained from simulations
at the time when the film front reaches rc1, where the onset of fingering extracted from
the experimental results occurs, as illustrated in figure 10. Table 2 lists the values of
h0(rc1) for a few values of α and for the widths w of the initial condition that lead to
the experimental fluid volumes. Additional simulations (not shown for brevity) show that
h0(rc1) is essentially the same for any reasonable choice of the initial fluid geometry.

Figure 11 plots the obtained results for the most unstable wavelength predicted by LSA
together with the experimentally measured one; the LSA results are also shown in table 2.
The experimental wavelength is defined by λ = 2π cos(α)rc/Nexp, and is given in units
of the capillary length. We note that it is crucial to use the film thickness h0(rc1) when
comparing the predictions of the LSA and experiment: using the initial film thickness does
not lead to a meaningful agreement. The number of fingers predicted by LSA, NLSA (given
also in table 2), can be compared directly with the values obtained in the experiments, Nexp,
see table 1. We find that the agreement is excellent for larger opening angles, however for
small angles the most unstable wavelength found by LSA is larger than that by experiment.
There is a number of possible reasons for this difference, which include an increased
influence of the azimuthal curvature that is not included in the presented methodology
(note that rc1 is smaller for small α), or simply the fact that slow development of instability
for small values of α may involve additional effects, such as a transient growth mechanism
which was proposed for the flow down an incline (Bertozzi & Brenner 1997).

Next, we proceed with an explanation (at least in qualitative terms) of some perhaps
counterintuitive trends from the experimental results. Figure 3(d) shows an increase of the
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Figure 11. Funnel: average finger spacing wavelength, λ, versus opening angle, α, including experiments (Exp,
filled green symbols) for which rc1 is available (see table 1), as well as matching linear stability analysis (LSA,
open black symbols) predictions from table 2. For completeness we plot the results for all available values of
hi per angle. Symbols indicate hi: � – hi = 5 mm for 60◦, 47◦, 35◦, and hi = 2.5 mm for 11◦; � – hi = 7 mm
for 60◦; 
 – hi = 7 mm for 47◦; � – hi = 3 mm for 11◦; � – hi = 4 mm for 11◦.

finger tip speed as the opening angle is decreased. Measuring the typical slopes in this
figure, we find that finger tip speed increases by the factors of (approximately) 1.5 and
2.5 as the opening angle decreases from α = 60◦ to 47◦ and 35◦, respectively. Recalling
now the expected scaling for the front speed, U ≈ h2

0 sin α, and using the values for h0
at the instability onset from table 2, we find that this expression for U provides a good
approximation for the front tip speed (the corresponding ratios are approximately 1.8
and 2.2). Therefore, an increase of the value of h0 as the opening angle decreases has
a stronger influence then a decrease of sin(α). One should keep in mind of course that
the above expression for U applies to an unperturbed front while the experimental results
from figure 3 are obtained by measuring the tip speed, and therefore only an approximate
agreement could be expected.

To explain the increase of the typical instability wavelength as α is decreased, recall
that based on the standard scaling argument, the (dimensional) most unstable wavelength
scales with the film thickness behind the front, h0, see Appendix A. Note that this scaling
argument is only approximate, since based on the LSA for the constant flux flow down an
incline, see figure 12 in Appendix A, the inclination angle influences the most unstable
wavelength as well. Still, the scaling λm ∝ h0(rc1) appears to be a good description of the
experimental results, as can be seen from tables 1 and 2.

4.2.1. Discussion
Reasonable agreement between theory and experiments, in particular for larger opening
angles, shows that our approach combining the information from experiments, simulations
and LSA describes well the main features of instability development. Before closing this
section, we list a few additional comments and observations.
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Instabilities of a thin liquid film in a funnel

(i) The reader may wonder whether simply using hi from the experiments (see table 1)
could be done to describe the instability development and emerging length scales.
This approach however does not lead to a reasonable estimate, since there is a
considerable change in the film thickness between rc0 and rc1. One may also wonder
whether the results of LSA may depend on the initial condition in simulations (which
is chosen ad hoc): the answer is again no, since the film does not develop instability
immediately; by the time rc1 is reached, the memory of the initial condition is lost.

(ii) There are two main differences between the flow down an incline and in a funnel:
one is film thickening due to the convergent nature of the flow, as discussed in
§§ 4.1.2 and 4.1.4; the other is the presence of azimuthal curvature for the funnel
flow, which we have not discussed in much detail. The curvature in the azimuthal
direction scales as 1/r, see § 3, so it is a small quantity as long as only large values
of r are considered. This value should be compared with the typical curvature (in the
radial direction) of the film itself, which is an O(1) quantity close to the film front.
Smallness of the azimuthal curvature justifies ignoring it in the present work, since
it is expected to become important only very close to the funnel centre. Therefore,
as long as the fluid front is far away from the centre, the flow in a funnel is similar
to the flow down an incline plane, as long as the fact that the film thickens due to
volume conservation is taken into account.

(iii) Figure 10 specifies the times at which instability starts to develop (when the fluid
front reaches rc1). We note that these times are shorter for the funnel compared with
flow down an incline, in particular for smaller α; this is due to the film thickening
for the flow in a funnel. Thicker films flow faster and also become unstable sooner,
compared with the flow down an incline.

(iv) In light of the discussion in this section, the experimental fact that the observed
number of fingers does not depend on fluid viscosity (see supplementary table 1)
may not be obvious. While viscosity only changes the time scale of the flow, for the
present problem the time scale may be important since the film thickness changes
with time. However, the location at which the film becomes unstable, rc1, and the
film thickness behind the capillary ridge, h0, turn out not to depend on the fluid
viscosity, which supports the presented approach for carrying out LSA and the
interpretation of the results.

(v) LSA predicts that instability will develop if the circumference 2πrc cos α is larger
than λc = 2π/qc. Consistently, the maximum number of unstable modes (leading to
fingers in experiments) that can be supported is �2πrc cos α/λc�, where �·� is the
floor function. One untested consequence of this result is that if the film is released
close to the centre of the funnel, it may not become unstable since the circumference
of the circle formed by the initial fluid front may not be long enough to support
instability development.

5. Conclusions

The presented results show that a reasonably complete understanding of the instability
development for a film flowing in a funnel can be reached by combining the insight
from experiments and asymptotic analysis to allow for a significant simplification of the
governing equations. Furthermore, it turns out that despite the complexity of the problem,
useful insight can be also reached by considering a self-similar approach similar to that
used for the flow down an incline plane. Such insight from self-similar methods combined
with LSA originating from the flow down an incline provides important guidance in
carrying out numerical simulations that help to develop a better understanding of the
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instability development. While we have focused on a particular geometry of flow in a
funnel, we note that a similar approach could be applied to a number of other unstable
flows, such as the flows on a sphere, on the outside surface of a funnel or even in more
complicated geometries.

To conclude, we note that instabilities of the systems whose base state evolves in time
are difficult to analyse in a tractable manner. For the present problem, we have shown
that reasonably good insight can be reached by simplifying the problem first, and then
using some input regarding instability development from the experiments. One would
of course like to be able to understand the general features of instability development,
including the factors that govern instability onset itself. Reaching this goal will require
further development of stability analysis and is left as an open problem for future work.

Supplementary material and movies. Supplementary material and movies are available at https://doi.org/
10.1017/jfm.2021.626, which includes movies of selected experiments, technical drawings of one of the funnels
used for experiments and the Excel data sheet including the results of additional experiments.
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Appendix A. Stability of the constant flux flow down an incline plane

Consider a completely wetting fluid flowing down a planar surface enclosing an angle
α with the horizontal. With the same scales as used in the main body of the paper, the
evolution equation of the film thickness can be written as (see e.g. Bertozzi & Brenner
1997; Kondic 2003)

∂

∂t
h = −∇ · [h3∇3h − cos αh3∇h + sin αh3ex], (A1)

where ex is the unit vector pointing in the positive x-direction. Re-normalizing the
variables as h = h0h̄, t = t̄/(h5

0 sin4 α)1/3, x = (h0/ sin α)1/3x̄, one obtains the well-known
model of a thin liquid film (after dropping the bars),

∂

∂t
h = −∇ · [h3∇3h − Dh3∇h + h3ex], (A2)

where D = (h0/ sin α)2/3 cos α. This equation admits a one-dimensional travelling wave
solution that satisfies

− Uh + h3hxxx − Dh3hx + h3 = c, (A3)
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Figure 12. Results of LSA for a liquid film on an incline plane with different D. The precursor film thickness
is b0 = 0.01.

where boundary conditions h(x = ∞) = b0, h(x = −∞) = 1 are imposed to have U =
1 + b0 + b2

0, c = −(b0 + b2
0). (Note that the (unscaled) speed of the front scales with the

film thickness squared, as can be seen from the ratio of the scaling factors for x and t.)
Linear stability of the film with respect to perturbations in the transverse, y, direction is
conveniently carried out in a moving coordinate frame, s = x − Ut, where we assume the
solution of the form

h(s, y, t) = H(s) + εg(s)eσ teiqy, (A4)

where H(s) satisfies (A3). At O(ε) we obtain a linear eigenvalue problem for g(s; q) with
eigenvalue σ that represents the growth rate of the temporal evolution of the perturbation
at each wave number. Figure 12 shows the results of this analysis; for more details see e.g.
Kondic (2003).
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