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Fast spectral solver for Poisson equation in an
annular domain∗

T.-S. Lin
†,‡
, C.-Y. He, and W.-F. Hu

A simple and efficient spectral method is formulated to solve Pois-
son equation in an annular domain. The solver relies on the Fourier
expansion, where the differential equations for the Fourier coeffi-
cients are solved using an ultraspherical spectral method. For a do-
main with N grid points in the polar direction andM grid points in
the radial direction, the solver only requires O(NM log2 N) arith-
metic operations.
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1. Introduction

The aim of the present manuscript is to develop a simple and efficient spec-
tral method to solve Poisson equation in an annular domain. This problem
had been well-studied and fast solvers had been constructed using Fourier
and 2nd-order finite difference method [5, 7], Fourier and compact 4th-order
finite difference method [6], spectral-Galerkin algorithms [11] and Fourier-
Chebyshev algorithm [12]. All these approaches took advantages of the
Fourier transform to transform Poisson equation, a partial differential equa-
tion (PDE), to a set of ordinary differential equations (ODEs) for each of the
Fourier modes. The ODEs are then approximated by sparse or structured
linear systems that can be solved efficiently. In the present manuscript, we
follow the same idea to transform the PDE into a set of ODEs. The ODEs
are then solved using ultraspherical spectral method [10]. The advantage of
the present approach is that it converges to the solution super-algebraically,
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i.e., it is faster than any algebraic convergence, and only requires solving an
almost banded, well-conditioned linear system.

The rest of the manuscript is organized as follows. In Section 2, we
provide a detailed presentation for the Fourier-ultraspherical method to solve
Poisson equation in an annular domain. In Section 3 several numerical tests
are conducted. Finally, the concluding remarks are given in Section 4.

2. Fast Fourier-ultraspherical spectral solver for Poisson
equation in an annular domain

We consider Poisson equation in a two-dimensional annular domain that,
written in polar coordinate system, has the form

(1)
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
= f(r, θ) 0 ≤ Ri < r < Ro, 0 ≤ θ < 2π,

where Ri and Ro are given fixed numbers that define either an annular do-
main (Ri > 0) or a disk (Ri = 0). The boundary conditions, either Dirichlet,
Neumann or Robin type, shall be specified to ensure the well-posedness of
the problem. In the following, we will assume that the Dirichlet boundary
conditions are imposed:

(2) u(Ri, θ) = g(θ), u(Ro, θ) = h(θ),

for some functions g and h. However, we note that, the boundary conditions
of the proposed method are not limited to Dirichlet type: Neumann or Robin
boundary conditions can be imposed easily as well.

We approximate the solution u by the truncated Fourier series as

(3) u(r, θ) =

N/2∑
n=−N/2+1

ûn(r)e
inθ,

where ûn(r) is the Fourier coefficient given by

(4) ûn(r) =
1

N

N−1∑
j=0

u(r, θj)e
−inθj ,

and θj = 2jπ/N where N is the number of grid points in the θ-direction. It
can be found easily that the n-th Fourier mode ûn(r) satisfies the ordinary
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differential equation

d2ûn

dr2 + 1
r
dûn

dr − n2

r2 ûn = f̂n, Ri < r < Ro,(5)

ûn(Ri) = ĝn, ûn(Ro) = ĥn,(6)

where f̂n(r), ĝn and ĥn are the Fourier coefficients of f , g and h, respectively,
defined in the same manner as ûn. In the following we shall explain how to
solve equations (5, 6) based on the ultraspherical spectral method.

For brevity of notations, in the following we drop the hat and subscript
and denote the Fourier coefficients U(r) = ûn(r), F (r) = f̂n(r), G = ĝn and
H = ĥn.

2.1. Ultraspherical spectral method

The ultraspherical (or Gegenbauer) polynomials, {C(λ)
i (x), i = 1, · · · }, are

a family of orthogonal polynomials on the interval [−1, 1] with respect to
the weight function (1− x2)λ−1/2. Two special cases are λ = 0, the Cheby-
shev polynomials of the first kind (also denoted by {Ti(x)}), and λ = 1,
the Chebyshev polynomials of the second kind [1]. More properties of the
ultraspherical polynomials can be found at Ref. [9].

In order to take advantages of the ultraspherical polynomials, we in-
troduce a new variable x that is defined on [−1, 1] and make the following
transformation between variables r and x:

x = αr − β, α =
2

Ro −Ri
, β =

Ro +Ri

Ro −Ri
.

The Fourier mode equations (5, 6) can then be rewritten in terms of the
new variable as

(x+ β)2 d
2U
dx2 + (x+ β)dUdx − n2 U =

(
x+β
α

)2
F, −1 < x < 1,(7)

U(−1) = G, U(1) = H.(8)

Next, we express the function U(x) in terms of Chebyshev basis functions

(9) U(x) =

∞∑
k=0

ckTk(x),

and seek to solve its coefficients ck’s.
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Following the approaches of Olver et. al. [10], we rewrite equations (7,

8) in the coefficient space. To do so, we need to take into account the differ-

entiation, conversion and multiplication operators in the coefficient space.

Specifically, the first and second order differentiation matrices are defined

as

D1 =

⎛
⎜⎜⎜⎝
0 1

2
3

. . .

⎞
⎟⎟⎟⎠ , D2 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 4
6

8
10

. . .

⎞
⎟⎟⎟⎟⎟⎠

,

respectively. We note that differentiation is realized by matrix-vector multi-

plication where by performing D1c we obtain the coefficients of dU
dx in terms

of the C(1) basis functions, where c = [c0, c1, · · · ]T . Similarly, by performing

D2c we obtain the coefficients of d2U
dx2 in terms of the C(2) basis functions.

In practice we need to truncate the infinite Chebyshev series expansions

into a finite one, and the matrix representing the linear operators are of

finite size correspondingly. Here we formulate the problem firstly in infinite

expansions and infinite matrices. The truncation of terms and matrices for

practical usage are attained by introducing the projection matrix later in

this section.

The conversion matrices to transfer between different basis functions are

defined as the following: The operator S0 that converts coefficients in C(0)

to C(1) and S1 that converts coefficients in C(1) to C(2) are defined as

S0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 −1
2

1
2 0 −1

2

1
2 0

. . .

1
2

. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, S1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 −1
3

1
2 0 −1

4

1
3 0

. . .

1
4

. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

respectively.

Notice that equation (7) is an ODE with non-constant coefficients, so

we need to take into account the multiplication between functions in the

coefficient space. The multiplication matrix for (x + β)2, denoted by M2,

should be written under the C(2) basis. It was found that M2 is a penta-



Fast spectral solver for Poisson equation in an annular domain 69

diagonal matrix that has entries, for j ≥ 1,

M2(j, j) = β2 +
1

6
+

(j − 1)(j + 3)

3j(j + 2)
, M2(j, j + 1) =

j + 3

j + 2
β,

M2(j + 1, j) =
j

j + 1
β, M2(j, j + 2) =

(j + 4)

4(j + 2)
,

M2(j + 2, j) =
j

4(j + 2)
.

The multiplication matrix for (x + β), denoted by M1, should be written

under the C(1) basis. It was found that

M1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

β 0.5
0.5 β 0.5

0.5 β 0.5

0.5 β
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

,

that is a tri-diagonal matrix.

Finally, we are able to rewrite equation (7) as

(10) Lc = S1S0F,

where L := M2D2 + S1M1D1 − n2 S1S0, and F is a vector that represents

the Chebyshev coefficients of the function ((x+ β)/α)2F (x).

2.2. Boundary conditions

Boundary conditions are forced directly that can be written down as a linear

system

(11) Bc = d,

where

B =

(
T0(−1) T1(−1) T2(−1) . . .
T0(1) T1(1) T2(1) . . .

)
,

and d = [G,H]T are the imposed Dirichlet boundary conditions.



70 T.-S. Lin et al.

Remark 1. We note that different kinds of conditions can be imposed easily
in a similar manner. For example, consider a Neumann boundary condition
at r = Ro, i.e.,

(12)
∂

∂r
u(Ro, θ) = h(θ).

The equation in the coefficient space is then written as

(
T ′
0(1) T ′

1(1) T ′
2(1) . . .

)
c = H.

2.3. Full linear system

The full linear system presenting equations (7, 8) is obtained by putting
together the discrete equation of the ODE, (10), and the equation for the
boundary conditions, (11). We seek to represent the solution in terms of
a (M − 1)th-degree Chebyshev polynomial. By introducing the projection
matrix Pn = (In,0), where In is a n-by-n identity matrix and 0 is a n-by-∞
zero matrix, the full system is given by

(13)

⎛
⎜⎜⎝

BP T
M

PM−2LP
T
M

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎝

c0
c1
...

cM−1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎝

d

PM−2S1S0F

⎞
⎟⎟⎠ ,

where the superscript T denotes matrix transpose. This system is a sparse
one that consists of two dense rows representing the boundary conditions and
a penta-diagonal matrix. It can be solved efficiently by using the Woodbury
formula [3]:

(14) (A+ UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1.

In this way, the overall cost of the proposed fast Poisson solver is as
follows. Solving one Fourier mode equation takes O(M) operations and
the cost of solving all the Fourier mode equations is O(NM). Besides, the
Fourier transform requires O(N log2N) operations in each azimuthal direc-
tion and is O(NM log2N) in the whole domain. In total, the solver requires
O(NM log2N) operations.

Remark 2. For Poisson equation in a unit disk, Ri = 0, the boundary
conditions required to be imposed at r = 0 is the so-called “pole conditions”.
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We follow Shen [11] to impose the “essential pole conditions”

(15) ûn(r = 0) = 0, n �= 0.

In such a case, for n �= 0 the boundary conditions are of Dirichlet type at
Ri so the same system of equations (13) is obtained. For n = 0, there is no
condition at Ri so the equation for the boundary condition becomes

B =
(
T0(1) T1(1) T2(1) . . .

)
,

and d = H. The full system is then given by

(16)

⎛
⎜⎜⎝

BP T
M

PM−1LP
T
M

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎝

c0
c1
...

cM−1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎝

d

PM−1S1S0F

⎞
⎟⎟⎠ .

3. Numerical examples

In this section, we perform numerical tests for the present Fourier-ultra-
spherical spectral method. The implementation in Matlab can be found at
Ref. [8].

3.1. Annular domain

We solve Poisson equation in an annular domain with Ri = 0.5 and Ro = 1.
Two cases are studied with exact solutions

1. u(r, θ) = sin(10r cos θ),
2. u(r, θ) = exp(r cos θ + r sin θ).

We fix the number of grid points in the θ-direction N = 100 and vary the
ones in the r-direction. The results of the error in L∞-norm (‖u − v‖∞ =
supx |u(x) − v(x)|) are shown in Table 1. One can see clearly the spectral
convergence of the solutions.

3.2. Disk domain

With Ri = 0 we solve Poisson equation in a unit disk with essential pole
condition as discussed in Remark 2. Similar to annular domain we study
two examples and fix the number of grid points in the θ-direction N = 100
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Table 1: Poisson equation in an annular domain. The values on the table
show the L∞-error between the numerical solutions and the exact solutions

M 10 14 18 20 100
u(r, θ) =
sin(10r cos θ)

1.30e− 05 1.40e− 09 4.75e− 14 3.41e− 15 3.62e− 15

u(r, θ) =
exp(r cos θ + r sin θ)

1.54e− 13 1.78e− 15 1.78e− 15 1.33e− 15 2.16e− 15

Table 2: Poisson equation in a unit disk. The values on the table show the
L∞-error between the numerical solutions and the exact solutions

M 10 14 20 30 100
u(r, θ) =
sin(10r cos θ)

6.27e− 02 1.94e− 04 2.96e− 09 8.60e− 15 1.86e− 13

u(r, θ) =
exp(r cos θ + r sin θ)

1.67e− 09 8.66e− 15 4.78e− 15 4.32e− 15 1.94e− 14

and vary the ones in the r-direction. The results of the error in L∞-norm
are shown in Table 2. Again, we see clearly the spectral convergence of the
solutions.

Remark 3. As pointed out by Olver et. al. [10], the condition number of
the matrix of the linear system (13) grows proportional to M . We have
verified that indeed for annular domains, Ri > 0, the condition number of
the linear systems grows as O(M). See, for example, numerical results in
Table 3. However, for a disk domain, Ri = 0, it is found that the condition
number of the system grows as O(M4). As a consequence the error may grow
significantly when one uses too many grid points. For example, in Table 2
one can see that the solutions are accurate to machine precision at M = 30
but the error become larger at M = 100.

Remark 4. For the disk domain, Ri = 0, grid points are clustered at the
pole that may cause numerical instabilities. To avoid such an ill-conditioning
situation, fast Poisson solvers were formulated through the use of parity
properties in a disk [12, 13], in a cylinder [2], or formulated through a low
rank approximations [14].

4. Conclusion

In the present manuscript a fast Poisson solver based on Fourier-ultra-
spherical spectral method in an annular domain is formulated. The algo-
rithm is simple and easy to implement: all the required matrices are almost-
banded and are given explicitly. The resultant matrix for the problem is
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Table 3: Condition number for the linear system of (13) for an annular
domain Ri = 0.5 and Ro = 1

M 20 200 2000 20000
annular domain 6.16 ∗ 102 6.85 ∗ 103 6.94 ∗ 104 6.95 ∗ 105

almost-banded that can be inverted efficiently based on Woodbury formula.
The overall cost of the algorithm is O(NM log2N) and the numerical results
confirm the super-algebraical convergence to the solution. Finally, we note
that the present elliptic solver can be extended straightforwardly to solve
the diffusion equation in an annular domain, and had been implemented to
study the chaotic swimming motion of phoretic particles [4].

References

[1] B. Fornberg, A practical guide to pseudospectral method, Cambridge
University Press, 1996. MR1386891

[2] D. Fortunato and A. Townsend, Fast Poisson solvers for spectral meth-
ods, https://arxiv.org/abs/1710.11259.

[3] G. H. Golub and C. F. Van Loan, Matrix computation, Johns Hopkins
University Press, 1996. MR1417720

[4] W.-F. Hu, T.-S. Lin, S. Rafai, and C. Misbah, Chaotic swimming of
phoretic self-propelled particles, submitted, (2019).

[5] A. Iserles, A first course in the numerical analysis of differential equa-
tions, Cambridge University Press, 1996. MR1384977

[6] M.-C. Lai, A simple compact fourth-order Poisson solver on polar ge-
ometry, J. Comput. Phys., 182 (2002), pp. 337–345.

[7] M.-C. Lai and W.-C. Wang, Fast direct solvers for Poisson equation on
2D polar and spherical geometries, Numer. Methods for Partial Diff.
Eqs., 18 (2002), pp. 56–68. MR1869457

[8] T.-S. Lin, https://github.com/teshenglin/fast poisson solvers.

[9] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, NIST
Handbook of Mathematical Functions, Cambridge University Press,
2010. MR2655349

[10] S. Olver and A. Townsend, A fast and well-conditioned spectral method,
SIAM Rev., 55 (2013), pp. 462–489. MR3089410

http://www.ams.org/mathscinet-getitem?mr=1386891
https://arxiv.org/abs/1710.11259
http://www.ams.org/mathscinet-getitem?mr=1417720
http://www.ams.org/mathscinet-getitem?mr=1384977
http://www.ams.org/mathscinet-getitem?mr=1869457
https://github.com/teshenglin/fast_poisson_solvers
http://www.ams.org/mathscinet-getitem?mr=2655349
http://www.ams.org/mathscinet-getitem?mr=3089410


74 T.-S. Lin et al.

[11] J. Shen, Efficient spectral-galerkin methods III: Polar and cylindrical ge-
ometries, SIAM J. Sci. Comput., 18 (1997), pp. 1583–1604. MR1480626

[12] J. Shen, A new fast Chebyshev-Fourier algorithm for Poisson-type equa-
tions in polar geometries, Appl. Num. Math., 33 (2000), pp. 183–190.
MR1770252

[13] L. Y. Trefethen, Spectral methods is Matlab, SIAM, 2001. MR1776072

[14] H. Wilber, A. Townsend, and G. B. Wright, Computing with functions
in spherical and polar geometries II. The disk, SIAM J. Sci. Comput.,
39 (2017), pp. C238–C262. MR3666775

T.-S. Lin

Department of Applied Mathematics

National Chiao Tung University,

Hsinchu 300, Taiwan

E-mail address: tslin@math.nctu.edu.tw

C.-Y. He

Department of Applied Mathematics

National Chiao Tung University,

Hsinchu 300, Taiwan

E-mail address: s0992605@gmail.com

W.-F. Hu

Department of Applied Mathematics

National Chung Hsing University,

Taichung 402, Taiwan

E-mail address: wfhu@nchu.edu.tw

Received August 20, 2019

http://www.ams.org/mathscinet-getitem?mr=1480626
http://www.ams.org/mathscinet-getitem?mr=1770252
http://www.ams.org/mathscinet-getitem?mr=1776072
http://www.ams.org/mathscinet-getitem?mr=3666775
mailto:tslin@math.nctu.edu.tw
mailto:s0992605@gmail.com
mailto:wfhu@nchu.edu.tw

	Introduction
	Fast Fourier-ultraspherical spectral solver for Poisson equation in an annular domain
	Ultraspherical spectral method
	Boundary conditions
	Full linear system

	Numerical examples
	Annular domain
	Disk domain

	Conclusion
	References

