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Abstract The flow of nematic liquid crystals down an inclined substrate is studied. Under the usual long wave
approximation, a fourth-order nonlinear parabolic partial differential equation of the diffusion type is derived for
the free surface height. The model accounts for elastic distortions of the director field due to different anchoring
conditions at the substrate and the free surface. The partial differential equation we derive admits 2D traveling-
wave solutions, which may translate stably or exhibit instabilities in the flat film behind the traveling front. These
instabilities, which are distinct from the usual transverse instability of downslope flow, may be analyzed and
explained by linear stability analysis of a flat translating film. Intriguing parallels are found with the instabilities
exhibited by Newtonian fluid flowing on an inverted substrate and Newtonian fluid flow outside a vertical cylinder.

Keywords Inclined plane · Liquid crystal · Nematic · Thin film

1 Introduction

There is great interest in understanding the dynamics of thin films due to their many applications. For Newtonian
isotropic fluids a vast literature already exists on both experimental data and theoretical models for thin films. For
complex fluids, such as liquid crystals (LCs), however, the theoretical and analytical literature is far more limited.

Thin films of LCs, and particularly of nematic liquid crystals (NLCs), find wide industrial application in display
devices due to their optical properties (birefringence) and electric field response. The reader is referred to the books
by Castellano [1] and Johnstone [2] for a history of liquid crystal display (LCD) development. The dielectric tensor
for NLCs is anisotropic, which may lead to very large refractive indices, a property used in the design of superlenses
that are capable of overcoming the resolution limits of conventional imaging techniques (diffraction limit) [3]. The
dielectric property may also be used to accurately control electromagnetic waves, a desired feature in the design of
devices for the purposes of optical imaging, space communication, and object detection by lasers [4]. The reader is
referred to the review paper by Palffy-Muhoray [4] for more information on these and many other applications.
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LCs are a state of matter intermediate between fluid and solid that have some short-range order to their molecular
structure. In the nematic phase, the molecules have no positional order. Typically, LC molecules are rodlike rigid
structures with a dipole moment associated with the anisotropic axis (the axis parallel to the length of the rodlike
molecule). The interactions of the dipole moments cause molecules to align locally, giving rise to an elastic response;
however, in general, fluid flow and external forces may distort the local alignment. At a surface or interface, NLC
molecules have a preferred orientation, a phenomenon known as anchoring. Therefore, to model NLCs it is important
to consider the velocity field, the local average orientation of molecules (director field), and the anchoring condition
at interfaces.

One approach to modeling the spreading of NLC droplets is within the framework of the long wave approximation.
Within this context, different anchoring conditions have been considered, including various combinations of weak
anchoring and strong anchoring (a Dirichlet condition on the director field) at the free surface and underlying
substrate [5–10]. In an alternative approach, energetic arguments were used to derive an equation governing free
surface evolution [11]. This approach leads to predictions that differ from those of [5–7]. The differences between
the approaches were recently reconciled [8,12], leading to consistent predictions.

In experiments [13–15], spreading droplets of NLCs exhibit a diverse range of instabilities. Moreover, these
instabilities exist in regimes where a Newtonian droplet would be stable. In this paper we consider a paradigm
problem that highlights some key features of NLC coating flows and the differences with Newtonian cases [16,17]:
the flow of a thin film of NLC down an inclined substrate. Our work builds upon an earlier model [10] and modifies
the free surface conditions to be thermodynamically consistent [18]. The resulting long wave model is a modified
version of the model presented in [8], which contains an additional term related to the component of gravity in the
downslope direction.

2 Model derivation

As was noted by Rey and Denn [19], the Leslie–Ericksen equations [20] are applicable for NLCs composed of rigid
rod-like molecules with no spatiotemporal variations in the scalar-order parameter (a measure of how well a unit
vector represents the local average orientation of LC molecules). Moreover, it was noted that the Leslie–Ericksen
equations had been very successful in modeling NLCs with low molar mass. For other materials, such as NLC
polymers (flexible rods), there may exist spatiotemporal dependencies in the order parameter, and other theories
may be more appropriate to describe such flows: for example, the Landau-de Gennes tensor model (a generalization of
the Leslie–Ericksen theory) or the Doi theory (a probabilistic description). In this paper, variations in the scalar-order
parameter are not considered, and we work with the Leslie–Ericksen theory throughout. The reader is referred to the
review paper by Rey and Denn [19] for further information on the strengths and weaknesses of the various models.

The main dependent variables within the Leslie–Ericksen formulation are the velocity field, v = (v1, v2, v3),
and the director field,

n = (n1, n2, n3) = (sin θ cosφ, sin θ sin φ, cos θ).

The Leslie–Ericksen equations describe the conservation of energy, momentum, and mass for a NLC in terms of v
and n. The governing equations are

∂W

∂ni
+

(
∂W

∂ni, j

)
, j

− Gi = 0, (1)

∂�

∂xi
+ Gk

∂nk

∂xi
+ ∂τi j

∂x j
= 0, (2)

∂vi

∂xi
= 0, (3)
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where we use subscript notation such that

W, j = ∂W

∂x j
and ni, j = ∂ni

∂x j
.

Here the important quantities are the total potential energy, �; the bulk elastic distortion (Frank) energy, W ; the
kinetic rotational energy associated with viscous forces in each direction, Gi ; and the viscous non-Newtonian stress
tensor, τ . The bulk elastic energy W for NLC is given by

2W = K1(∇ · n)2 + K2 (n · ∇ × n)2 + K3 |n × ∇ × n|2 ,
where Ki , i = 1, 2, 3, are elastic constants related to pure splay, pure twist, and pure bend distortions. Note that W
is zero if and only if the director field, n, is constant.

The elastic constants are of the same order of magnitude, and it is common to make the so-called one constant
approximation [7,8,10,14,21–23], K = K1 = K2 = K3, reducing W to

2W = K
(
(∇ · n)2 + |∇ × n|2

)
. (4)

The remaining quantities are given by

Gi = γ1 Ni + γ2 eiknk, � = p + W + ψg,

Ni = −ṅi − ωik nk, ei j = 1

2

(
∂vi

∂x j
+ ∂v j

∂xi

)
, ωi j = 1

2

(
∂vi

∂x j
− ∂v j

∂xi

)
,

τi j = α1nkn pekpni n j + α2 Ni n j + α3 N j ni + α4ei j + α5eiknkn j + α6e jknkni ,

where p is the pressure and ψg the gravitational potential. The constants γi and αi are viscosities satisfying
γ1 = α3 − α2 and γ2 = α6 − α5. Furthermore, the αi satisfy the Onsager relation, α2 + α3 = α6 − α5.

We consider the flow of a thin film of NLC down an inclined substrate, as indicated in Fig. 1. We define our
coordinates (x, y, z) such that the in-plane coordinates (x, y) point down and across the incline, respectively, and
z is perpendicular to the plane of the substrate; χ is the inclination angle. In our formulation, we follow [8] but
include a new gravitational potential, ψg = −gρz cosχ + gρx sin χ , where g is the gravitational acceleration and
ρ the density of the NLC.

As noted in the introduction, NLC molecules have a preferred orientation with respect to a surface, a phenomenon
known as anchoring [19,24]. At a free surface, the director often prefers to align normal to the surface (so-called
homeotropic anchoring). At a solid substrate, the anchoring is determined by the chemical interactions between the
NLC and the substrate. It is common in applications to treat substrates chemically to impose planar anchoring with
respect to the surface. In our analysis we assume strong planar anchoring at the substrate z = 0 (the director field
is always at the preferred orientation, which here is parallel to the substrate) and weak homeotropic anchoring at
the free surface z = h [21], as discussed subsequently in Sect. 2.1.1. Variations on these anchoring conditions are
easily addressed within the current framework.

2.1 Long wave approximation

Let h0 be a representative film height, L the lengthscale of variations in the x direction, U the characteristic flow
velocity down the plane, and μ a representative viscosity scale. Defining the aspect ratio, δ = h0/L � 1, we scale
the variables as follows:

(x, y, z) = (Lx̂, L ŷ, Lδẑ), (u, v, w) = (U x̂,U ŷ,Uδẑ), t = L

U
t̂, (5)
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where hatted variables are dimensionless. Inspection of the energy (4) and momentum balance (2) then suggests
the following scalings:

W = K

L2δ2 Ŵ and p = μU

δ2 L
p̂. (6)

Using (5) and (6), two dimensionless parameters may be defined:

B = δ3ρgL2

μU
and Ñ = K

μU L
, (7)

the Bond and inverse Ericksen numbers, respectively.

2.1.1 Energetics of the director field

In this section, we follow the novel approach to the energetics of the director field presented in [8]. In terms of the
dimensionless variables, and dropping the hats, to leading order the bulk energy (4) is

2W = θ2
z + φ2

z sin θ, (8)

and energy conservation (1) becomes

∂W

∂ni
+

(
∂W

∂ni, j

)
, j

+ δÑ Ḡi = 0, Ḡ = (
uzn3, vzn3, uzn1 + vzn2

)T
, (9)

where the terms in Ḡ = (Ḡ1, Ḡ2, Ḡ3)
T are the leading-order terms of G = (G1,G2,G3)

T in (1).
If Ñ = O(1), then the coupling term, Ḡ, in (9) is of lower order. This implies that the time scale on which

elastic reorientation occurs is faster than the time scale of fluid flow. In this limit, (9) reduces to the Euler–Lagrange
equations. The energy of the system consists only of the bulk energy, W , and the surface energy G associated with
the weak (conical) homeotropic anchoring at the free surface. Therefore,

J =
h∫

0

∫
�

Ñ W dS dz +
∫
�

G dS, (10)

where � is the fluid domain in the (x, y) plane.
To find the energy minimum, we use a variational approach and consider small variations in the director angles, φ

and θ . Using integration by parts for the volume integral in (10), the vanishing of the bulk terms in the first variation
of J leads to

θzz = φz

2
sin 2θ in� ∪ {0 < z < h}, (11)[

φz sin2 θ
]

z
= 0 in� ∪ {0 < z < h}. (12)

The surface contribution, G, is assumed to be independent of the angleφ (conical anchoring); therefore, the vanishing
of the surface contributions leads to

φz sin2 θ = 0 in� ∩ {z = h}, (13)

Gθ̄ + Ñ θz = 0 in� ∩ {z = h}, (14)

where θ̄ is the director angle on the free surface, i.e., θ̄ (x, y, t) = θ(x, y, z = h, t). Equations (12) and (13) show
that the angle φ must be independent of z, which reduces (11) to θzz = 0. Satisfying the strong anchoring condition
on the substrate, S (z = 0 here), gives

φ(x, y, t) = φS(x, y), θ = a(x, y, t)z + π

2
. (15)
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Fig. 1 Diagram showing
coordinate system used
relative to substrate

If strong anchoring is imposed on both surfaces, then in a very thin film, adjusting between two antagonistic angles
leads to unrealistically large energy penalties in the bulk. To resolve this issue, we impose weak homeotropic
anchoring, with energy G(θ̄), at the free surface. This means that the director angle θ is approximately zero at the
free surface only for thick films (h � 1), but it can depart from zero significantly for very thin films (h � 1). More
precisely, we write [consistent with (15)]

θ = π

2

(
1 − m(h)

h
z

)
, (16)

where m(h) is a monotonically increasing function such that m(0) = 0 and m(∞) = 1. This function m(h) is
directly related to the surface anchoring energy G via Eq. (14). Using the chain rule, we find

dG
dh

= Gθ̄
dθ̄

dh
= −Ña

dθ̄

dh
= −N m(h)m′(h)

h
,

where N = π2Ñ /4 is the scaled inverse Ericksen number. We choose the same form for m(h) as was used in [8],

m(h) = f (h; b)
hα

hα + βα
, f (h; b) = 1

2

[
tanh

(
h − 2b

w

)
+ 1

]
. (17)

Here, b � 1 is the thickness of a preexisting precursor film that is assumed to be present in all our numerical
simulations and α and β > 0 are constants that tune the relaxation of the anchoring at the free surface. The
functional form of m(h) corresponds to choosing a specific form of the free surface anchoring energy G(θ̄) [it is
easily verified that the corresponding G(θ̄) has a unique minimum at θ̄ = 0]. The function f (h; b) provides a
continuous “cutoff” behavior, i.e., it imposes planar anchoring at the free surface to match that at the substrate when
the film height goes below the precursor thickness, b. The constantw provides control over the range of h for which
such planar anchoring is imposed.

2.1.2 Flow equations

Under the long wave scalings, coupled with the assumed form of the director field given by (15) and (16), to leading
order momentum conservation (2) becomes

∇
(

p + N m2
)

+ U î = ∂

∂z

[(
B1 B3

B3 B2

) (
uz

vz

)]
, (18)

∂p

∂z
= −D, (19)
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where ∇ = (∂x , ∂y)
T, î = (1, 0)T,

U = B sin χ, D = B cosχ (20)

and Bi are given by

B1 = A1 + A2 cos 2φ, B2 = A1 − A2 cos 2φ, B3 = A2 sin 2φ,

A1 = 1 + (α5 − α2) cos2 θ + α1 sin2 θ cos2 θ + α3 + α6

2
sin2 θ,

A2 = α1 sin2 θ cos2 θ + α3 + α6

2
sin2 θ.

To proceed, we first integrate (19). To fix the constant of integration, we assume that in the direction normal to the
surface, fluid stresses (elastic and viscous) are balanced by surface tension,

p + N m2 = −C∇2h on z = h(x, y, t), (21)

where

C = δ3γ

μU
(22)

is the inverse capillary number and γ is surface tension. The left-hand side of (18) is now known explicitly and
furthermore is independent of z; therefore, (18) may be integrated. To find the constant of integration, note that in
the directions tangential to the surface, fluid stresses are balanced by surface energy gradients,

−Ñ
[
θz∇θ + θ2

z ∇h
]

+
(

B1 B3

B3 B2

) (
uz

vz

)
= Ñ∇G = −N mm′

h
∇h,

on z = h(x, y, t). Substituting (16) in the preceding equation yields

(
B1 B3

B3 B2

) (
uz

vz

)
= 0 on z = h(x, y, t). (23)

Integrating (18) over the film height and imposing (23) at the free surface, we find a matrix equation for uz and vz ,

[
F(h)+ U î

]
(h − z) =

(
B1 B3

B3 B2

)(
uz

vz

)
, (24)

where

F(h) = ∇
(

p + Ñ W
)

= D∇h − C∇∇2h + N m2 − hmm′

h3 ∇h.

We assume there is no penetration and no slip at the substrate, w = u = v = 0 on z = 0, and we enforce the
kinematic condition (to leading order) at the free surface, ht (x, y, t) = w(x, y, z = h, t). The conservation of mass
(3) may then be integrated over the film height to obtain

ht +
h∫

0

∇ · (u, v)T dz = 0. (25)

The determinant of the Bi matrix on the right-hand side of (24) is D = A2
1 − A2

2. Assuming |A1| 	= |A2|, this matrix
is nonsingular and may be inverted to obtain uz and uv . We also have the following identities:
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h∫
0

uz(h − z) dz =
h∫

0

u dz,

h∫
0

vz(h − z) dz =
h∫

0

v dz,

which we use to combine expressions (24) and (25) to yield

ht +
h∫

0

∇ ·
(

E(h)
[
F(h)− U î

])
dz = 0, (26)

where the matrix E(h) is defined by

E(h) =
h∫

0

1

D

(
B2 −B3

−B3 B1

)
(h − z′)2 dz′. (27)

The integral in (27) is difficult to evaluate directly; therefore, we follow [8] in using a two-point trapezoidal rule
for its estimate. This reduces (26) to the following fourth-order nonlinear parabolic partial differential equation for
the film thickness, h,

ht + ∇ ·
(
Ch3∇̃∇2h − Dh3∇̃h − N M(h)∇̃h

)
+ ULh3 = 0, (28)

where

M(h) = m2 − hmm′, (29)

∇̃ =
[
λI + ν

(
cos 2φ sin 2φ
sin 2φ − cos 2φ

)](
∂x

∂y

)
,

L = [λ+ ν cos 2φ] ∂x + ν sin 2φ∂y + 2ν
[
φy cos 2φ − φx sin 2φ

]
,

λ = 2 + α3 + α6

4 (1 + α3 + α6)
, ν = − α3 + α6

4 (1 + α3 + α6)
,

and m(h) is defined by Eq. (17). Note that for the majority of NLCs, −1 < α3 + α6 < 0; therefore, λ > ν > 0 and
∇̃ has positive coefficients.

3 Analysis: two-dimensional flow

To simplify the analysis and gain better insight into the phenomena captured by the model, only two-dimensional
flow will be considered for the remainder of this paper, with a full investigation of the characteristics of the three-
dimensional model deferred to a future publication. Under this restriction, φ = 0, π are the only consistent values
for the substrate anchoring. In either case, this leads to a factor of λ + ν in front of all spatial derivatives, which
may be removed by rescaling time. Under this rescaling, Eq. (28), in two space dimensions with a free surface
z = h(x, t), becomes

ht +
[
Ch3hxxx − Dh3hx − N M(h)hx + Uh3

]
x

= 0, (30)

with M(h) as defined in (29) and dimensionless parameters as defined in (7), (20), and (22). It should be noted that
if N = 0, then (30) describes the flow of a Newtonian thin film down an inclined plane [25]. In two dimensions
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and in the absence of a contact line, a Newtonian film described within the long wave approximation with inertial
effects ignored flows stably down an inclined surface with only a hump (capillary ridge) forming near the front of
the fluid. Therefore, any qualitatively different instability mechanism may only be a result of the N term.

3.1 Traveling-front solution

Motivated by known results for Newtonian films [16,26], we first seek traveling-wave solutions, h(x, t) = H(x −
V t) = H(s), where V is the wave speed. Inserting this ansatz into (30) and integrating once with respect to the
new variable s = x − V t , we obtain

−V H + CH3 H ′′′ − DH3 H ′ − N M(H)H ′ + U H3 = c, (31)

where c is a constant of integration. Applying the far-field boundary conditions, H(s → ∞) = b and H(s →
−∞) = h0 (corresponding to constant undisturbed flow), where h0 is the free surface height behind the front and
b is the precursor thickness, the front velocity satisfies

V = U
(

h2
0 + h0b + b2

)
. (32)

The preceding expression is the usual traveling-front speed for a Newtonian film; however, recall that a factor of
λ+ ν has been scaled out of the two-dimensional governing Eq. (30).

3.2 Linear stability of a flat film

We start by carrying out linear stability analysis (LSA) of a uniform film, which describes the situation far behind
the traveling front. Consider a flat film with a small perturbation, h(x, t) = h0 + εh1(x, t), where ε � 1. If we
substitute this form of the solution into (30), then the O(ε) equation is

∂h1

∂t
+ Ch3

0
∂4h1

∂x4 − Dh3
0
∂2h1

∂x2 − N M(h0)
∂2h1

∂x2 + 3Uh2
0
∂h1

∂x
= 0. (33)

Assuming the plane wave form h1 = eωt+ikx leads to the dispersion relation

ω = −
(
Ch3

0k2 +
[
Dh3

0 + N M(h0)
])

k2 − 3Uh2
0ki. (34)

The wavenumber k is real, and for instability we require Re(ω) > 0 for some range of k. Hence, the sign of the term
h3

0D +N M(h0) determines the stability of the film: if it is negative, then there is a range of unstable wavenumbers.
By assumption, D, N > 0; thus, M(h), given by Eq. (29), must be negative for some range of film heights for
instability. Figure 2 shows M(h)/h3 and Fig. 3 the dispersion relation in the unstable regime. In this case, the modes
|k| ∈ (0, kc) are unstable, where

kc =
√√√√− 1

C

[
D + N M(h0)

h3
0

]
. (35)

Furthermore, the fastest growing mode is given by

km =
√√√√− 1

2C

[
D + N M(h0)

h3
0

]
(36)
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Fig. 2 Plot of M(h)/h3, where M(h) is given by (29) and m(h)
is as defined in (17), with α = 2, β = 0.5, and w = 0.05. For a
thin film of height h such that M(h)/h3 < 0, elastic effects are
destabilizing

Fig. 3 Example of dispersion relationship (34) in unstable regime
(Dh3

0 + N M(h0) < 0). Plane wave disturbances with wavenum-
ber k ∈ [0, kc] are unstable

and its growth rate is

ωm = 1

4C

[
D + N M(h0)

h3
0

]2

. (37)

We will assume throughout that the precursor film ahead of the traveling front lies in the stable regime of film
thicknesses.

3.3 Absolute and convective instability

It is known from earlier work [25] that if N = 0 and D > 0, then there exist stable traveling fronts that are solutions
to Eq. (31). Furthermore, based on other results [16], for N = 0 and D < 0, it is known that a traveling front
may exhibit several types of instabilities. It is of interest to analyze the analogous instabilities that arise within the
context of the present model specified by Eq. (30).

Within the unstable regime, it is instructive to discuss the evolution of surface perturbations. We may exploit
existing results by noting that (33) may be transformed into the linearized symmetric Kuramoto–Sivashinsky (KS)
equation. Following [16], we consider a moving reference frame, rescaling variables as

η =
√

−κ
γ
(x − ζ t) , τ = (−κ)2

γ
t, (38)

where

κ = Dh3
0 + N M(h0), ζ = 3Uh2

0, and γ = Ch3
0.

Under this transformation, (33) reduces to

hτ + hηηηη + hηη = 0.

We now consider the velocity of the left- and right-hand boundaries (denoted by − and +, respectively) of an
expanding so-called wave packet of perturbations to a flat film of height h0. Following the techniques in [27], the
velocities of the expanding wave packet boundaries are found numerically as (η/τ)± = ±1.622. Reverting to x
and t variables yields, for the boundaries of the wave packet,
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( x

t

)
±

= 3Uh2
0 ± 1.622

√√√√−
[Dh3

0 + N M(h0)
]3

Ch3
0

. (39)

The square root term is real since we are (by assumption) in the unstable regime. Comparing the wave packet
velocity (39) to the traveling-front velocity (32), we see that the rightward moving wave packet boundary is always
faster than the traveling front for b < h0. This boundary may therefore always be ignored since it will move to
the (stable) precursor side of the traveling front. There are three different cases to be considered for the left wave
packet boundary, which we now discuss.

3.3.1 Type 1 (stable)

The left wave packet boundary also travels faster than the front:

V < (x/t)− .
For this case, perturbations propagate ahead of the traveling front (into the physical region occupied by the stable
precursor) and are thus never observed.

3.3.2 Type 2 (convectively unstable)

The left wave packet boundary velocity is slower than the front velocity but still positive:

0 < (x/t)− < V .

In this case, perturbations grow, and propagate more slowly than the front itself. Since the wave-packet velocity is
positive, it travels to the right, thus does not propagate beyond the initial front position. The film remains flat behind
the initial front.

3.3.3 Type 3 (absolutely unstable)

The left wave packet boundary velocity is negative,

(x/t)− < 0,

and hence travels to the left. As with Type 2, perturbations grow, but since the wave packet travels to the left, the
disturbance is not confined, and the entire film is ultimately destabilized.

4 Computational results and discussion

In this section the results obtained from numerical simulations of Eq. (30) are compared to the analytical and LSA
predictions derived in Sect. 3. To simplify the parameter study, unless stated otherwise, we vary N , and for the
other parameters we use the values specified in Table 1. The numerical simulations are based on a Crank–Nicolson
(implicit) discretization scheme coupled with a Newton–Raphson iterative method to evaluate the nonlinear terms
and an adaptive time stepping scheme. The reader is referred to [16] for more information on the numerical method.
To study the dynamics of a traveling front, the domain and boundary conditions are given by

h(x0, t) = h0, h(xL, t) = b, hx (x0, t) = hx (xL, t) = 0, (40)

where we set x0 = 0 and xL = 400. We use the initial condition (IC)

h(x, 0) = (h0 − b)

2
tanh [−5 (x − xf)] + h0 + b

2
, (41)
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Table 1 Values of
parameters chosen for
simulations (except where
specified otherwise). Here,
n is the number of
discretization points

Parameter Value Parameter Value

C 1 β 0.5

D 1 α 2

U 1 w 0.05

h0 0.25 n 5,000

b 0.1 B
√

2

χ π/4

Table 2 Comparison of
LSA predictions given by
(32) with average front
speed calculated from
numerical simulations.
Unless specified otherwise,
in the Parameters column,
N = 1.25, with other
parameters as given in
Table 1

Parameters Type Numerical V Analytical V Relative
difference (%)

Default Values 2 0.1004 0.0975 2.9

U = 2 1 0.1948 0.1950 0.1

h0 = 0.35 1 0.1670 0.1675 0.3

N = 2 3 0.1202 0.0975 18.9

b = 0.05 1 0.0769 0.0775 0.8

C = 2 2 0.0973 0.0975 0.2

D = 2 2 0.0974 0.0975 0.1

β = 0.8 1 0.0976 0.0975 0.1

which transitions from some height, h0, behind the front at x = xf to the precursor thickness, b. We set the initial
front position xf to be far from the boundaries; more precisely, for x ∈ [x0, xL], xf = 2 (xL + x0) /3. For simulations
of a perturbed flat film, the initial condition

h(x, 0) = h0

{
1 + 0.1 exp

[
− k

10
(x − xc)

2
]

cos
[
k (x − xc)

]}
(42)

is used, where xc is the center of the interval, and k is given by (36). In the unstable regime (D +N M(h)/h3 < 0),
the maximum of the growth rate (37) with respect to h corresponds to the minimum of M(h)/h3,

h0 = max
h
ωm = min

h

M(h)

h3 ;
therefore, for any N , C, U , and D considered, the same h0 maximizes (37). Hence, with fixed α β, and w, we may
fix h0 and analyze instability in the C–D–N –U or B–χ–C–N parameter spaces.

4.1 Traveling wave

To analyze the validity of our predictions for traveling-wave speed (32), we carried out simulations using (41) as
the initial condition. Table 2 shows that for Type 1 (stable) cases, the relative difference between the front speed
V predicted by (32) and the average speed of the front calculated from numerical simulations is less than 1 % (the
average speed was computed by averaging over the period of time sufficiently long that the results do not depend on
the length of the averaging period). For the unstable Types 2 and 3, instabilities may interact with the front, causing
oscillations in the height of the capillary ridge (the hump that forms behind the traveling front, seen in the Type 1
simulations in Fig. 4) as well in the front speed.

Figure 4 compares the height profiles for various N at t ∼ 400. A larger N leads to stronger instability, as
expected based on (37). In this expression, M(h) < 0; thus, increasing N results in larger growth rates, ωm. To
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Fig. 4 Comparison of height profiles at t ∼ 400 for various values of N . Dashed line: initial front position

Fig. 5 Comparison of LSA
prediction given by (36)
with average wave number
k calculated from direct
numerical simulations of
(30). Here N is increasing,
with other parameters as
specified in Table 1

compare with the LSA results, Fig. 5 gives the LSA predictions based on (36). We note that, although the agreement
between the LSA and numerical results is not perfect, the LSA captures the monotonic increasing dependence of
km on N when M(h) < 0.

4.2 Stable, convectively unstable, and absolutely unstable traveling waves

As mentioned in Sect. 3.3, there are three cases to consider for the left wave packet boundary. The threshold between
the Type 1 and Type 2 regimes is found by equating the front speed (32) to the wave packet speed given by (39). The
transition from Type 2 to Type 3 is given by the parameter set such that the speed of the left-hand boundary of the
wave packet is zero. We also consider the stability threshold of a perturbed flat film, specified by the requirement
that the O(k2) coefficient in the dispersion relation (34) vanishes. In terms of N , with parameters as specified in
the caption of Table 1, these regimes are as follows:

Stable Perturbed Flat Film : 0 < N < 0.2810
Type 1 (Stable Traveling Front) : 0.2810 < N < 0.9351
Type 2 (Convectively Unstable) : 0.9351 < N < 1.3480
Type 3 (Absolutely Unstable) : 1.3480 < N

In what follows we concentrate on the unstable regimes and consider the evolution of a traveling front and that of
a perturbed flat film for N = 0.7, 1.2, 1.7 (Types 1–3, respectively).
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Fig. 6 Height profiles for perturbed flat film (42) in Type 1 regime for N = 0.7. Top to bottom: t = 0, 100, 200, 300, 400

Fig. 7 Height profiles for traveling front (41) in Type 1 regime for N = 0.7. Top to bottom: t = 0, 100, 200, 300, 400

Figure 6 shows a perturbed flat film in the Type 1 regime, N = 0.7. We see that the perturbation does not decay
but rather slowly spreads over the film. On the other hand, Fig. 7 shows that the analogous traveling front is stable
once the capillary ridge has formed at the front. This is as expected since here the left wave packet boundary is
predicted to move faster than the front itself; this can also be seen by direct comparison of the speed of perturbation
in Fig. 6 and of the front in Fig. 7. Figure 8 shows a perturbed flat film in the Type 2 regime, N = 1.2. We
observe stronger instability (initial perturbation grows noticeably in amplitude) compared to the Type 1 case and
the initial formation of solitary-like waves, similar to those observed for hanging films [16]. The waves do not
propagate beyond the center, xc, of the initial perturbation (42), suggesting convective instability. Figure 9 shows
the corresponding results for a traveling front. We confirm that the left boundary of the perturbation is traveling to
the right (velocity is positive) and the front remains flat behind the initial front position, showing consistently the
convective nature of the instability.

In the Type 3 regime (N = 1.7), absolute instability is observed for both a perturbed flat film and a traveling
front, as shown in Figs. 10 and 11, respectively. The left wave packet boundary propagates to the left and therefore
would eventually destabilize the entire film behind the front.
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Fig. 8 Height profiles for perturbed flat film (42) in Type 2 regime for N = 1.2. Top to bottom: t = 0, 100, 200, 300, 400

Fig. 9 Height profiles for traveling front (41) in Type 2 regime for N = 1.2. Top to bottom: t = 0, 100, 200, 300, 400

Fig. 10 Height profiles for perturbed flat film (42) in Type 3 regime for N = 1.7. Top to bottom: t = 0, 100, 200, 300, 400
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Fig. 11 Height profiles for traveling front (41) in Type 3 regime for N = 1.7. Top to bottom: t = 0, 100, 200, 300, 400

Fig. 12 Plot of stability zones for traveling front in χ–N plane.
The dashed-dotted line gives an example of where, when the incli-
nation angle χ is varied, all three stability regimes are possible.
Note the entire region below the dashed curve is a stable regime
for a traveling front. In this and the following figures, S denotes
the region (below the solid curve) in which a perturbed flat film is
stable. Note that V is defined by Eq. (32) and the transformation
between the D–U plane and B–χ plane is defined by Eq. (20)

Fig. 13 Plot of stability zones for traveling front in χ–h0 plane
for N = 0.25. S denotes stable region

4.3 Parametric dependence

To study the effect of the inclination angle, first recall the relationship between the D–U domain and the B–χ
domain (20). We may then fix B = √

2 and study the effect of χ on the stability regimes. Figure 12 shows the
stability zones in the χ–N plane with other parameters defined in Table 1. Clearly, when N is large enough, for
any small angle of inclination, χ , the film is absolutely unstable. The dependence on χ may be surprising: this
figure shows that increasing χ may lead to a transition from absolutely unstable (Type 3) to convectively unstable
(Type 2), and even to Type 1, where a traveling front is stable. An example of where all three (in)stability regimes
are possible by varying the inclination angle is shown by the dashed–dotted line N = 0.6 in Fig. 12. We note that
the effect of C and B on the results is as expected, with larger values of both C and B stabilizing the flow.

It is of interest to discuss the stability zones in terms of the intrinsic parameters: h0 and χ . In Figs. 13–15 we plot
the stability zones for three values of N , with fixed values for all other parameters, given in Table 1. We observe
a rich structure involving transitions between stability and instability within the considered parameter space, with
the general trend that the surface becomes increasingly unstable for larger values of N , as expected.
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Fig. 14 Plot of stability zones for traveling front in χ–h0 plane
for N = 0.8. S denotes stable regions

Fig. 15 Plot of stability zones for traveling front in χ–h0 plane
for N = 2.0. S denotes stable regions

5 Conclusions

To summarize, we find that, in contrast to Newtonian films, two-dimensional flows of nematic liquid films down
an incline may be unstable with respect to surface perturbations. Furthermore, the analysis and simulations suggest
that, depending on the physical parameters of the system, a traveling front can be stable, convectively unstable, or
absolutely unstable. Consideration of perturbed flat films leads to consistent results. Relating the parameters in our
dispersion relation back to the angle of inclination χ , we find an interesting interplay between the destabilizing
effects of gravity and the liquid crystalline nature of the film, such that for a given N (inverse Ericksen number) an
increase of χ may bring the film from the absolute to the convective instability regime and even stabilize a traveling
front.

There are striking parallels between the results obtained in this work and those obtained for the flow of a
Newtonian fluid on an inverted substrate [16] or for the flow of a Newtonian fluid on the outer surface of a vertical
cylinder [17]. For Newtonian films, surface instability is caused by destabilizing gravity; for NLC films it is due
to the interplay between elastic properties and the anchoring conditions. In the present work we have focused on
the two-dimensional geometry only and have not considered an interplay between free surface instability and the
transverse instability of the contact line leading to so-called fingering. We leave a detailed study of this problem for
future work.
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