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We consider free surface instabilities of films flowing on inverted substrates within the framework
of lubrication approximation. We allow for the presence of fronts and related contact lines and
explore the role which they play in instability development. It is found that a contact line, modeled
by a commonly used precursor film model, leads to free surface instabilities without any additional
natural or excited perturbations. A single parameter D= �3 Ca�1/3cot �, where Ca is the capillary
number and � is the inclination angle, is identified as a governing parameter in the problem. This
parameter may be interpreted to reflect the combined effect of inclination angle, film thickness,
Reynolds number, and fluid flux. Variation of D leads to change in the wavelike properties of the
instabilities, allowing us to observe traveling wave behavior, mixed waves, and the waves
resembling solitary ones. © 2010 American Institute of Physics. �doi:10.1063/1.3428753�

I. INTRODUCTION

There has been significant amount of theoretical, com-
putational, and experimental work on the dynamics of thin
liquid films flowing under gravity or other body or surface
forces in a variety of settings. The continuous and extensive
research efforts are understandable recalling large number of
applications which in one way or another involve dynamics
of thin films on substrates. These applications range from
nanoscale assembly, to a variety of coating applications, or
flow on fibers, to mention just a few.

The research activities evolved in a few rather disjoined
directions. One of them is flow down an incline of the films
characterized by the presence of fronts �contact lines�. These
flows are known to be unstable with respect to transverse
instability, leading to formation of fingerlike or triangular
patterns.1–5 One may also consider flow of a continuous
stream of fluid down an incline. Experimentally, this con-
figuration was analyzed first by Kapitsa and Kapitsa6 and
more recently and in much more detail in a number of works,
in particular by Gollub and co-workers.7–9 The reader is also
referred to Refs. 10 and 11 for relatively recent reviews.
Linear stability analysis �LSA� shows that these films are
unstable with respect to long-wave instability when the Rey-
nolds number, Re, is larger than the critical value, Rec

=5 cot � /6, where � is the inclination angle.12,13 As the
waves’ amplitude increases, LSA cannot describe them any-
more as nonlinear effects become dominant. Therefore, non-
linear models have been developed to analyze this problem,
including the Kuramoto–Sivashinsky equation,14,15 Benney
equation,16 and Kapitsa–Shkadov system.17,18 Typically, film
flows exhibit convective instability, suggesting that the shape
and amplitude of the waves are strongly affected by external
noise at the source. There has been a significant amount of
research exploring the consequences of imposed perturba-
tions of controlled forcing frequencies at the inlet.9,19–21 It is
found that solitary waves appear at low frequencies, while
saturated sinelike waves occur at high ones. Moreover, it has

been demonstrated that, further downstream, the film flow is
dominated by solitary waves whether they result from im-
posed perturbations or are “natural.”9 It is known that the
amplitude and velocity of these waves are linearly propor-
tional to each other19,22 and the slope of the amplitude-
velocity relation in the case of falling and inclined film had
been examined by several authors.9,23–25 Another interesting
feature is wave interaction. Since the waves characterized by
larger amplitude move faster, they overtake and absorb the
smaller ones. Furthermore, this merge causes the peak height
and velocity to grow significantly.9,20 In general, the works in
this direction concentrate on a continuous stream of fluid and
do not consider issues introduced by the presence of a con-
tact line.

In a different direction, there is some work on flow of
fluids on inverted substrates. These works involve either the
mathematical/computational analysis of the situation leading
to finite time singularity, i.e., detachment of the fluid from
the surface under gravity,26 or experimental works involving
the so-called tea-pot effect,27,28 which includes the develop-
ment of streams and drops that occurs as a liquid film �or
parts of it� detached from an inverted surface, or both.29

These considerations typically do not include contact line
treatment; the fluid film is assumed to completely cover the
considered domain.

In this paper we concentrate on the flow down an in-
verted inclined substrate of films with fronts. We will see that
this problem includes aspects of all of the rather disjoined
problems considered above. For clarity and simplicity, we
will concentrate here only on two dimensional �2D� flow;
therefore we are not going to be concerned with the three
dimensional �3D� contact line instabilities. In addition, we
assume that the flow is slow so that the inertial effects can be
ignored, and furthermore that the lubrication approximation
is valid, requiring that the gradients of the computed solu-
tions are small. The final simplification is the one of com-
plete wetting, i.e., vanishing contact angle. This final simpli-
fication can easily be avoided by including the possibility of
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partial wetting, but we do not consider this here. Contact line
itself is modeled using precursor film approach which is par-
ticularly appropriate for the complete wetting case on which
we concentrate. As discussed elsewhere �e.g., Ref. 30�, the
choice of regularizing mechanism at a contact line does not
influence in any significant way the large scale features of
the flow; models based on any of the slip models will pro-
duce results very similar to the ones presented here.

The main goal of this work is to understand the role of
contact line on the formation of surface waves. This connec-
tion will then set a stage for analysis of more involved prob-
lems, involving contact line stability with respect to trans-
verse perturbations, and the interconnection between these
instabilities. In addition, the presented research will also al-
low connecting to the detachment problem of a fluid “hang-
ing” on an inverted substrate. We also note that although we
concentrate here on gravity driven flow, our findings with
appropriate modifications may be relevant to the flows
driven by other forces �such as electrical or thermal� and
across the scales varying from nano to macro.

II. PROBLEM FORMULATION

Consider a gravity driven flow of incompressible New-
tonian film down a planar surface enclosing an angle � with
horizontal �� could be larger than � /2�. Assume that the film
is perfectly wetting the surface �such as commonly used sili-
cone oil �polydimethylsiloxane� on glass substrate�. Further,
assume that lubrication approximation is appropriate, as dis-
cussed in Ref. 31. Within this approach, one finds the fol-
lowing result for the depth averaged velocity v̄:

3�v̄ = �h̄2�̄�̄2h̄ − �gh̄2�̄h̄ cos � + �gh̄2 sin �i , �1�

where � is the viscosity, � is the surface tension, � is the

density, g is the gravity, h̄= h̄�x̄ , ȳ , t̄� is the fluid thickness,

and �̄= ��x̄ ,�ȳ� �x̄ points downwards and ȳ is in horizontal
transverse direction�. By using this expression in the mass

conservation equation, �h̄ /�t̄+ �̄ · �h̄v̄�=0, we obtain the fol-
lowing dimensionless PDE:32,33

�h

�t
+ � · �h3 � �2h� − D � · �h3 � h� +

�h3

�x
= 0. �2�

Here, thickness h and coordinates x, y are expressed in units
of h0 �the fluid thickness far behind the front�, and �
=h0�3 Ca�−1/3, respectively. The capillary number, Ca
=�U /�, is defined in terms of the flow velocity U far behind
the front. The time scale is chosen as � /U. Single dimension-
less parameter D= �3 Ca�1/3cot � measures the size of the
normal component of gravity. In addition, one should be
aware lubrication approximation is strictly valid for h0 /�
�1, corresponding to the Ca�1 limit.

Equation �2� requires appropriate boundary and initial
conditions, which are formulated below. We concentrate on
the physical problem where uniform stream of fluid is flow-
ing down an incline and therefore far behind the fluid front
we will assume the fluid thickness to be constant �constant
flux configuration�. At the contact line itself, we will assume
“precursor film model” discussed in some detail elsewhere.30

The initial condition is put together with the idea of model-
ing incoming stream of the fluid and the only requirement is
that it is consistent with the boundary conditions.

For the flow down an inclined surface with ��� /2 and
correspondingly D	0, the solutions of Eq. �2� are fairly well
understood both in the 2D setting where h=h�x , t�, and in the
3D one, where h=h�x ,y , t�. The solution is characterized by
a capillary ridge which forms just behind the front.34 This
solution, while stable in 2D, is known to be unstable to per-
turbations in the transverse, y, direction. In this work, we
will concentrate on the 2D setup only, but for D
0, there-
fore analyzing the flow down an inverted surface �hanging
film�.

A. Initial and boundary conditions

Consider 2D flow, therefore h is y-independent. Equa-
tion �2� can be rewritten as

�h

�t
+ �h3�hxxx − Dhx + 1��x = 0. �3�

The numerical simulation of Eq. �3� is performed via a finite-
difference method. More specifically, we implemented im-
plicit second-order Crank–Nicolson method in time, second-
order discretization in space and Newton’s method to solve
the nonlinear system in each time step, as described in detail
in, e.g., Ref. 31. The boundary conditions are such that con-
stant flux at the inlet is maintained. The choice implemented
here is

h�0,t� = 1, hxxx�0,t� − Dhx�0,t� = 0. �4�

At x=L, we assume that the film thickness is equal to the
precursor, so that

h�L,t� = b, hx�L,t� = 0, �5�

where L is the domain size and b is the precursor film thick-
ness, b�1. Typically, we set b=0.01. The initial condition is
chosen as a hyperbolic tangent to connect smoothly h=1 and
h=b at x=xf; it has been verified that the results are inde-
pendent of the details of this procedure.

III. COMPUTATIONAL RESULTS

It is known that for flow down a vertical plane, a capil-
lary ridge forms immediately behind the fluid front. This
capillary ridge can be thought of as a strongly damped wave
in the streamwise direction. As we will see below, this wave
is crucial for understanding the instability that develops for a
flow down an inverted surface. Here, we first outline the
results obtained for various D and then discuss their main
features in some more details in the following section. We
use xf =5 for all the simulations presented in this section.

Type 1: −1.1�D
0. For these values of D, we still
observe existence of a dominant capillary ridge; this ridge
becomes more pronounced as the magnitude of D is in-
creased. In addition, we also observe secondary, strongly
damped oscillation behind the main ridge. Figure 1 shows an
example of time evolution profile for D=−1.0. For longer
times, traveling wave solution is reached, and the wave
speed reaches a constant value equal to U=1+b+b2, as dis-

052105-2 T.-S. Lin and L. Kondic Phys. Fluids 22, 052105 �2010�



cussed, e.g., in Ref. 5. Appendix 1 gives more details regard-
ing this traveling wave solution, including discussion of the
influence of precursor film thickness on the results, see Fig.
12 below.

Type 2: −1.9�D
−1.1. The capillary ridge is still ob-
served; however, here it is followed by a wave train. Figure
2 shows as an example of the evolution for D=−1.5. Waves
keep forming behind the front, and, furthermore, they move
faster than the front itself. Therefore the first wave behind
the front catches up with the ridge, interacts, and merges
with it. The other important feature of the results is that there
are three different states observed behind the capillary ridge:
two types of waves and a constant state. These states can be
clearly seen in the last frame of Fig. 2. Immediately behind
the front, there is a range characterized by waves resembling
solitary ones10 discussed in some more detail below. This
range is followed by another one with sinusoidal shape
waves. Finally there is a constant state behind. Such mixed-
wave feature remains present even for very long time. To
illustrate this, Fig. 3 shows the result at much later time, t
=340, using an increased domain size.

Also, Fig. 4, which includes typical results from the type
3 regime discussed below, imply that type 2 corresponds to a
transitional regime between the types 1 and 3. Additional
simulations �not shown here� suggest that the regions where

the waves are present within type 2 regime become more and
more extended as the magnitude of D is increased. Future
insight regarding the nature of wave formation in type 2
regime is discussed in the following section. Here we note
that the available animations of wave evolution are very
helpful to illustrate the complexity of wave interaction in
type 2 and type 3 regime discussed next.

Type 3: −3.0�D
−1.9. This is a nonlinear steady trav-
eling wave regime. There is no damping of surface oscilla-
tions that we observed, e.g., in Fig. 2. Figure 5 shows an
example obtained using D=−2.0. Here, a wave train forms
behind the first �still dominant� capillary ridge. Similarly as
before, since this wave train travels faster than the fluid front,
there is an interaction between the first of these waves and
the capillary ridge. On the other end of the domain, these
waves also interact with the inlet at x=0; the role of this
interaction is discussed in more details later in Sec. IV C.

We find that the type 3 includes two subtypes. For
smaller absolute values of D, such as D=−2.0, one finds
sinusoidal waves as shown in Fig. 5. For larger magnitudes
of D, we find solitary type waves, the structures sometimes
referred to as “solitary humps,” such that characteristic di-
mension of a hump is much smaller than the distance be-
tween them.10 Both types of waves are illustrated in Fig. 4,
which shows the results for D=−2.0 and D=−3.0, and in
Fig. 6 showing the typical wave profiles for D=−2.0,
D=−2.5, and D=−3.0. The wave profiles that we find are
very similar to the ones observed for continuous films ex-
posed to periodic forcing.9,21,22 For the flow considered here,
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FIG. 1. The flow down an inverted substrate �D=−1.0�. From top to bottom,
t=0,40,80,120,160.
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FIG. 2. The flow down an inverted substrate �D=−1.5�. From top to bottom,
t=0,40,80,120,160 �enhanced online�.
�URL: http://dx.doi.org/10.1063/1.3428753.1�
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FIG. 3. The flow down an inverted substrate �D=−1.5� at t=340.
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FIG. 4. Comparison of the results for different D at t=150.
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the governing parameter is D, in contrast with the forcing
frequency in the works referenced above.

In the next section, we will discuss in more detail some
features of the results presented here. Here, we only note that
it may be surprising that all the waves discussed are found
using numerical simulations, remembering that we do not
impose forcing on the inlet region, and furthermore we do
not include inertial effects in our formulation. Instead, we
have a hanging film with a contact line in the front. There-
fore, it appears that the presence of fronts and corresponding
contact lines plays an important role in instability develop-
ment.

We note that it is possible in principle to carry out the
computations also for more negative D. We find that, as ab-
solute value of D is increased, the amplitude of the waves,
including the capillary ridge, increases, and furthermore the
periodicity of the wave train following the capillary ridge is
lost. However, since the observed structures are character-
ized by relatively large spatial gradients which at least lo-
cally are not consistent with the lubrication approximation,
we do not show them here. It would be of interest to consider
this flow configuration outside of lubrication approximation
and analyze in more detail the waves in this regime. In ad-

dition, this regime should also include the transition from
flow to detachment, the configuration related to the so-called
“tea-pot” effect.27–29

IV. DISCUSSION OF THE RESULTS

In this section, we discuss in some more detail the main
features of the numerical results and compare them with the
ones that can be found in the literature. We consider in par-
ticular the difference between various regimes discussed
above. In Sec. IV A we give the main results for the veloci-
ties of the film front and the propagating waves. In Sec. IV B
we discuss the main features of the instability that forms and
show that the presence of contact line is important in deter-
mining the properties of the waves, including their typical
wavelength. Then we finally discuss one question that was
not considered explicitly so far: What is the source of insta-
bility? As we already suggested, contact line appears to play
a role here. However, it is appropriate to also discuss the
influence of numerical noise on instability development,
shown in Sec. IV C. As we will see, both aspects are impor-
tant to gain better understanding of the problem.

A. Front speed and wave speed

Figure 7 compares the velocity of the leading capillary
ridge for different D. The speed of the traveling wave solu-
tion, U, is 1+b+b2, and is exactly the front speed for
D=−1.0, as discussed in Appendix 1 in connection with Fig.
12. For all other cases shown, the velocity of the leading
capillary ridge oscillates around U, due to the interaction
between the leading capillary ridge and the upcoming waves.

Table I shows the speed of waves in the type 3 regime.
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FIG. 5. The flow down an inverted substrate �D=−2.0�. From top to bottom,
t=0,40,80,120,160. Note that there is a continuous interaction of the sur-
face waves and the front, since the surface waves travel faster than the front
itself �enhanced online�. �URL: http://dx.doi.org/10.1063/1.3428753.2�
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FIG. 6. Wave profile for different D. �a� D=−2.0, �b� D=−2.5, and �c� D
=−3.0. The wave profile has been shifted to illustrate the difference in wave
number, i.e., xr=x−x0, where x0 is an arbitrary shift.
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FIG. 7. Velocity profile of the leading capillary ridge for different D.
D=−1.0 �solid line�, D=−2.0 �dashed line�, and D=−3.0 �dotted line�.

TABLE I. Wave amplitude and wave speed for different D in the type 3
regime. Note that the wave speed is always larger than the capillary ridge
speed, shown in Fig. 7.

D Wave amplitude Wave speed

�2.0 1.53 1.88

�2.5 1.88 2.20

�3.0 2.38 2.65
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As we can see, the wave speed in all cases is greater than U.
A simple explanation on why the waves move faster than the
fluid front itself is that the motion of the front is resisted by
the precursor film �recall that, in the limit b→0, there is
infinite resistance to the fluid motion within the formalism
implemented here�. The surface waves, however, travel with
a different, larger speed. Therefore, the upcoming waves
eventually catch up with the front, interact, and merge into a
new capillary ridge. Figure 8 illustrates this process. Due to
the conservation of mass, the height of the leading capillary
ridge increases strongly right after the merge. Also the speed
of the capillary ridge increases. As the leading capillary ridge
moves forward, its height decreases until the next wave ar-
rives. That is the reason why we see such pulselike velocity
profiles in Fig. 7; each pulse is a sign of a wave reaching the
front. In the type 2 regime, the velocity of the front shows
similar oscillatory behavior, although the approximate peri-
odicity of the oscillations is lost due to more irregular struc-
ture of the surface waves. Going back to type 3 and Table I,
we see that wave amplitude and speed are both increasing
with D, consistently with the behavior of continuous verti-
cally falling films.19,22

B. Absolute versus convective instability

Here we analyze some features of the results in particu-
lar from type 1 and type 2 regimes using LSA. Let us ignore
for a moment the contact line and analyze stability of a flat
film. The basic framework is given in Appendix 2. We realize
that Eq. �A4� can be reduced to a linear Kuramoto–
Sivashinsky equation in the reference frame moving with the
nondimensional speed equal to 3. Consider then the evolu-
tion of a localized disturbance imposed on the flat film at t
=0. This disturbance will transform into an expanding wave
packet with two boundaries moving with the velocities �x / t�−

and �x / t�+.35 In the laboratory frame, these velocities are
given by36

� x

t
�

�

� 3 � 1.62�− D�3/2. �6�

The right going boundary moves faster than the capillary
ridge and can be ignored. Considering now the left boundary,
we see that there is a range Dc1DDc2 such that the speed

of this boundary is positive and smaller than U. Alterna-
tively, one can use the approach from Ref. 37, which is based
on studying the behavior of the curve �i=0 in the complex k
plane, with the same result. Using either approach, one finds
Dc1�−1.15 and Dc2�−1.51. This result explains the bound-
ary between the type 1 and type 2 regimes since for type 1,
DDc1 and the left boundary moves faster than the front
itself. For DDc2, the speed of the left boundary is positive,
and therefore the instability is of convective type. This can
be seen from Fig. 4 and is illustrated in detail in Table II. In
this table, we show the value of Dlin, predicted by Eq. �6�,
using the position of the left boundary x− obtained numeri-
cally. While the agreement between Dnum and Dlin is gener-
ally very good, we notice some discrepancy for Dnum=−1.7;
this can be explained by the fact that for this Dnum there is
already some interaction with the boundary at x=0.

These results suggest that we should split our type 2
regime into two parts: type 2a, for which the speed of the left
boundary is positive �DDc2�, and type 2b, for which the
speed of the boundary is negative and the instability is of
absolute type. In type 2a regime, a flat film always exists and
expands to the right with time. In type 2b regime, flat film
disappears after sufficiently long time. As an illustration, we
note that D=−1.5, shown in Fig. 2, lies approximately at the
boundary of these two regimes, since here the length of the
flat film is almost time independent. We also note that in the
type 2b regime, we always observe two types of waves, in
contrast with type 3; that is, the structure shown, e.g., in Fig.
4 for D=−1.7 persists for a long time.

To allow for better understanding of the properties of the
waves that form, in the results that follow we modified our
initial condition �put xf =50� to allow for longer wave evolu-
tion without interaction of the wave structure with the do-
main boundary �x=0�. Figure 9 shows that for D=−2.0, the
waves form immediately behind the leading capillary ridge;
see also the animation attached to this figure. For longer time
�t40 in Fig. 9�, the disturbed region covers the whole do-
main as expected based on the material discussed in Sec.
IV B. Note that even for t=100 we still see transient behav-
ior: the long time solution for this D consists of uniform
stream of waves and is shown in Fig. 6�a�. This long time
solution is independent of the initial condition. However, the
time period needed for this uniform stream of waves to be
reached depends on the initial film length and is much longer
for larger xf used here.

Figure 9 suggests that contact line plays a role in wave
formation �the other candidate, numerical noise, is discussed
below�. One may think of contact line as a local disturbance.

x0 15 30 45

time

FIG. 8. Wave interaction with the capillary ridge. Time evolution is from the
bottom to the top, D=−2.0.

TABLE II. Dnum is the value of D used in simulations, the position x− is
taken from Fig. 4 �t=150� and used to calculate the speed �x / t�−; Dlin is
calculated from Eq. �6� using the negative sign.

Dnum x− �x / t�− Dlin

�1.1 150 1.00 �1.15

�1.3 100 0.66 �1.28

�1.5 30 0.20 �1.44

�1.7 0 0.00 �1.51
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It generates an expanding wave packet as we have just
shown, and the velocities of the two boundaries are given by
Eq. �6�. In particular, for D
Dc1, the left boundary moves
slower than the capillary ridge. The wave number, kl, along
this boundary is defined by

�� ��

�k
��

k=kl

= � x

t
�

−
, �7�

and it should be compared with the sinelike waves that form
due to contact line presence �such as the waves shown in Fig.
9 for early times�. Table III gives this comparison: the values
of kl for a given D are shown in the second column, followed
by the numerical results for the wave number, qn. We find
close agreement, suggesting that kl captures very well the
basic features of the waves that form due to contact line
presence. Furthermore, both qn and kl are much larger than
km, the most unstable wave number expected from the LSA
described below �viz., the last column in Table III�. This
difference allows to clearly distinguish between the contact
line induced waves and the noise induces ones, discussed in
what follows.

C. Noise induced waves

The results of LSA of a flat film �see Appendix 2� for the
most unstable wave number shown in Table III confirm that
a flat film is unstable to long wave perturbations for negative
D. Although our base state is not a flat film, there is clearly a
possibility that numerical noise, which includes long wave
component, could grow in time and influence the results. As
an example, we consider again D=−2.0. Similar results and
conclusions can be reached for other values of D.

Let us first discuss expected influence of numerical
noise. For D=−2.0, the LSA shows that it takes 30 time units
for the noise of initial amplitude of 10−16 �typical for double
precision computer arithmetic� to grow to 10−2. LSA also
shows that waves with small amplitude should move with the
speed 3. That is, natural noise, which is initially at x=0,
should arrive to x=90 after 30 time units. Figure 10 illus-
trates this phenomenon. As t approaches 30, we see that the
noise appears at about x=90. Noise manifests itself through
the formation of waves behind the contact line induced
waves which were already present for earlier times; see also
the animation attached to Fig. 10. To further confirm that this
new type of waves is indeed due to numerical noise, we also
performed simulations using quadruple precision computer
arithmetic. Figure 11 shows the outcome: with higher preci-
sion, the noise induced waves are absent, as expected. We
note that in order to be able to clearly identify various re-
gimes, we take xf =150 in Figs. 10 and 11, so that no influ-
ence of the boundary condition at x=0 is expected.

In Fig. 10 �t=31�, we can clearly distinguish between the
waves induced by contact line �120
x
190�, and the
“natural waves” induced by noise �50
x
120�. The main
difference is the wavelength. The contact line induced waves
have their specific wavelength, 2� /kl, while the noise in-
duced ones are characterized by a wavelength, �, corre-
sponding very closely to the mode of maximum growth, �
�2� /km, obtained using LSA. This can be clearly seen by
comparing the numerical results shown in Fig. 10 �t=31�
with the LSA results given in Table III.

To summarize, the evolution of the wave structure in the
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FIG. 9. D=−2.0. From top to bottom, t=0,10,20,40,100. For early times,
the contact line induced instability propagates to the left. For longer times,
sinelike and solitarylike waves are observed, covering the whole domain by
t=40 �enhanced online�. �URL: http://dx.doi.org/10.1063/1.3428753.3�

TABLE III. The second column shows theoretical results for the wave num-
ber of the left moving boundary �kl�, in the limit of small oscillations, see
Eq. �7�. The third column shows the wave number resulting from simula-
tions for different D in type 2 and type 3 regimes in the contact line induced
part �e.g., the waves shown in Fig. 2 �t=160� for 40
x
80 for type 2, or
in Fig. 9 �t=20� about x=40�. The last column shows the wave number of
maximum growth, km, resulting from the LSA.

D kl qn km

�1.3 1.10 1.10 0.81

�1.5 1.18 1.14 0.87

�1.7 1.25 1.23 0.92

�2.0 1.36 1.35 1.00

�2.5 1.52 1.48 1.12
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3

0

3

h

FIG. 10. D=−2.0. From top to bottom, t=25,27,29,31 �double precision�.
The initial condition for this simulation is chosen to be a hyperbolic tangent
with contact line located at x=150. Also note the comparison between con-
tact line induced wave �120
x
190� and error-induced wave �50
x

120� �enhanced online�. �URL: http://dx.doi.org/10.1063/1.3428753.4�
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type 2 and type 3 regimes proceeds as follows. First one sees
formation of contact line induced waves, characterized by
relatively short wavelengths �compared to what would be
expected based on the LSA of a flat film�. Depending on the
value of D, one may also see formation of solitary-looking
waves immediately following the capillary ridge. At some
later time, these waves are followed by noise-induced one.
These three types of waves are all presented in Fig. 10. Then,
at even later times, when the waves cover the whole domain
and interact with the x=0 boundary, the final wave pattern
forms, as illustrated for D=−2.0 by Fig. 4. In the conclusions
we discuss briefly under which conditions these waves may
be expected to be seen in physical experiments.

Remark I. Finally, one may wonder why the traveling
wave solution for D=−1.0 shown in Fig. 1 remains stable for
such a long time. Recall that the LSA predicts that natural
noise with amplitude 10−16 should grow to 10−2 in 130 time
units, while our numerical result shows that flat film is pre-
served even for t=160. The reason is the domain size. It
takes approximately 66 time units for noise to travel across
the domain �moving with the speed equal to 3�, and the noise
can only grow from 10−16 to 10−9 during this time period for
D=−1. This is why we do not see the effect of noise for
small D.

Remark II. We used LSA of a flat film �therefore, ignor-
ing contact line presence� to predict the evolution of the size
of the region covered by waves in Sec. IV B. However, in
order to understand the properties of the waves that form in
this region, one has to account for the presence of a front, as
discussed in Sec. IV C. In our simulations, we are able to
tune the influence of noise on the results �viz., Fig. 10 versus
Fig. 11�. In physical experiments, these two effects will quite
possibly appear together.

D. Relation of physical quantities with nondimensional
parameter D

It is useful to discuss the relation between the nondimen-
sional parameter D in our model, Eq. �2�, and physical quan-
tities. In particular, we recall that there are two quantities, h0

�film thickness� and � �inclination angle�, which can be ad-
justed in an experiment, and here we discuss how variation

of each of these modifies our governing parameter and the
results. We also relate D to the fluid flux and the Reynolds
number.

The velocity scaling in Eq. �2� can be expressed as

U =
�g

3�
h0

2 sin � .

Therefore the parameter D can be written as

D = ��g

�
�1/3

h0
2/3 cos �

�sin ��2/3 . �8�

In our simulations, the flux Q in the x-direction has been kept
constant and equals to 1. The dimensional flux is

Q = 1 · h0 · U =
�g

3�
h0

3 sin � . �9�

Reynolds number can be expressed as

Re =
�Uh0

�
=

�2g

3�2h0
3 sin � . �10�

We note that there is no contradiction in considering Re,
although inertial effects were neglected in deriving the for-
mulation that we use. The present formulation is valid for
Re=o�1 /�� or smaller, where ��1 is the ratio of the length
scales in the out-of-plane and in-plane directions.38 Consid-
ering the influence of Re for this range is permissible.

The relation between D and relevant physical quantities
is shown in Table IV. For fixed inclination angle an increase
in the magnitude of D is equivalent to an increase in the film
thickness, flux, and Reynolds number. On the other hand, for
fixed film thickness, i.e., h0=const, raising the magnitude of
D leads to lower flux and Reynolds number, and the inclina-
tion angle approaches horizontal. We can use this connection
to relate to the experimental results of Alekseenko et al. �see
Fig. 11 in Ref. 39�. They performed the experiments with
fixed inclination angle and increasing the flux, which corre-
sponds to an increase in the magnitude of D in our case. Our
Fig. 6 shows that the trend of our results is the same as in the
above experiments. In addition, the results in Ref. 29 suggest
that further increasing of the flux leads to pinch-off, consis-
tently with our results, since for D
−3.0, numerics suggest
that lubrication assumption is not valid.

0

3

0

3

h

V10

3

x0 40 80 120 160 200
0

3

FIG. 11. D=−2.0. From top to bottom, t=25,27,29,31 �quadruple preci-
sion�. The initial condition is the same as in Fig. 10.

TABLE IV. Relation of the parameter D to other parameters for fixed con-
tact angle, � �left�, and for fixed film thickness, h0 �right�. The up arrow ↑
means an increase and down arrow ↓ means a decrease.

� fixed h0 fixed

D0 D
0 D0 D
0

	D	 ↑ ↑ 	D	 ↑ ↑
h0 ↑ ↑ � ↓ ↑
Q ↑ ↑ Q ↓ ↓
Re ↑ ↑ Re ↓ ↓
U ↑ ↑ U ↓ ↓
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Finally, one should recall that lubrication approximation
is derived under the condition of small slopes, which trans-
lates to

�h0

sin �

a
�2/3

� 1, �11�

if nondimensional slopes are O�1�, see, e.g., Ref. 31; here
a=
� /�g is the capillary length. In addition, by combining
the above lubrication limit with Eq. �8�, one gets the follow-
ing condition �see also Ref. 40�:

	D	 
 	cot �	 . �12�

Therefore, for a given D, there exists a range of inclination
angle for which the thin film model, Eq. �2�, is valid. Table V
shows this range for some values of D.

V. CONCLUSIONS

In this paper we report numerical simulation of thin film
Eq. �2� on inverted substrate. It is found that by changing a
single parameter D, one can find three different regimes of
instability. Each regime is characterized by a different type
of waves. Some of these waves show similar properties as
the ones observed in thin liquid films with periodic forcing.
However, in contrast with those waves produced by pertur-
bations at the inlet region, our instability comes from the
front. We find that the presence of a contact line leads to free
surface instability without any additional perturbation. Ac-
cording to LSA, we know that for negative D, the model
problem, Eq. �2�, is unstable in the sense that any numerical
disturbance grows exponentially in time. However, we can
also take advantage of the stability analysis to separate the
instability caused by noise and any other sources.

Finally, we may ask about experimental conditions for
which the waves discussed here can be observed. As an ex-
ample, consider polydimethylsiloxane, also known as sili-
cone oil �surface tension: 21 dyn/cm; density: 0.96 g /cm3�,
and discuss the experimental parameters for which the con-
dition 	D	
3.0 is satisfied. For �=170° �the value used in
Ref. 39�, the thickness should be less than 1.4 mm. Table VI
gives the values for this, as well as for some other D. How-
ever, one should recall that Eq. �12� shows that our model is
formally valid only up to a certain D for a given inclination
angle �. In addition, one should be aware that the use of
lubrication approximation is easier to justify for inclination
angles further away from the vertical.

ACKNOWLEDGMENTS

The authors thank Linda J. Cummings and Burt Tilley
for useful comments. They also acknowledge very useful
input from anonymous referee leading to the material pre-
sented in Sec. IV B. This work was partially supported by
NSF Grant No. DMS-0908158.

APPENDIX: EVOLUTION OF SMALL PERTURBATIONS

Equation �3� is a strongly nonlinear PDE and, to our
knowledge, has no analytical solutions. In this appendix, we
present two analytical approaches which consider evolution
of small perturbations from a base state within linear ap-
proximation. While these results are useful for the purpose of
verifying numerical results, they also provide a very useful
insight into formation and evolution of various instabilities
discussed in this work.

1. Traveling wave solution

Setting s=x−Ut in Eq. �3�, a traveling wave H�s�
=h�x , t� must satisfy

− UH + �H3�H� − DH� + 1�� = c . �A1�

Imposing the conditions H→1 as s→−�, and H→b as s
→�, we find U=1+b+b2, c=−b−b2.5,41 The traveling wave
speed, U, is useful for verifying whether or not the numerical
result is a traveling wave solution.

Figure 12 shows a typical profile of the traveling wave
solution for D=−1. A capillary ridge forms behind the fluid

TABLE V. �c is the inclination angle at which lubrication theory ceases to
be formally valid.

D
�c

�deg�

�1.0 135

�1.5 147

�2.0 154

�3.0 162

TABLE VI. h0 is the film thickness defined by Eq. �8�.

�
�deg� D

h0

�mm�

150 �1.0 0.93

�1.5 1.7

170 �1.0 0.27

�2.0 0.75

�3.0 1.40

x0 10 20 30 40 500

1

2
x20 300.99

1

1.01

x18 240.9999

1

1.0001

FIG. 12. Traveling wave solution of D=−1 case at three different scales
with precursor thickness b=0.01 �solid line� and b=0.1 �dashed line�. Note
that the precursor thickness only changes amplitude of the traveling wave
profile but not the wavelength. The arrows point to the zoomed-in regions.
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front, similarly as for the flow down a vertical or inclined
�D0� substrate. We also find that there exists a long oscil-
latory region behind the capillary ridge. To analyze this
“tail,” we expand Eq. �A1� around the base state, H�1, and
consider the evolution of a small perturbation of the form
exp�qs�, where q=qr+ iqi. We find

− 8qr
3 + 2Dqr + 2 − b − b2 = 0, �A2�

qi
2 + D = 3qr

2. �A3�

Table VII shows the only positive root for qr, for a set of D.
The positivity of this root signifies that the amplitude of the
tail decays exponentially in the −x direction, as also sug-
gested by the insets of Fig. 12. Furthermore, as shown in
Table VII, qr decreases for more negative D, meaning that
the tail is longer for these D. This table also shows the imagi-
nary part of q; we see an increase in its magnitude as D
becomes more negative, suggesting shorter and shorter
wavelengths in the tail. Tail behavior is very useful for com-
putational reasons. For example, to solve Eq. �A1� by shoot-
ing method, one can evaluate suitable shooting parameters
through Eqs. �A2� and �A3�.

Figure 12 also shows the effect of precursor thickness on
traveling wave solution. It is found that while the precursor
thickness changes the height of the capillary ridge, it has
almost no effect on the wavelength of the tail.

2. Linear stability analysis

Another approach to analyze the stability of a flat film is
classical LSA. Assume h=1+� where ��1. Equation �3� can
be simplified to the leading order as

�t + �xxxx − D�xx + 3�x = 0. �A4�

By putting ��exp i�kx−�t�, where �=�r+ i�i, we obtain
the dispersion relation

− i��r + i�i� + k4 + Dk2 + 3ik = 0, �A5�

hence

�r = 3k, �i = − �k4 + Dk2� = − �k2 + D/2�2 + D2/4. �A6�

As a result, for non-negative D, a flat film is stable under
small perturbations. For negative D, it is unstable for the
perturbations characterized by sufficiently large wavelengths.
The critical wave number kc=
−D and the perturbation with
wave number km=
−D /2 has the largest growth rate. Be-
sides, the speed of a linear wave is 3, and it is significantly
larger than the traveling wave speed, U. As discussed in the

main body of the text, this speed is very important to identify
the waves induced by natural noise.

In addition, one should note that the maximum growth
rate increases as inclination angle � goes from � /2 to �.
Particularly, in the limiting case �→� �hanging film�, the
growth rate is exactly the same as for thin film Rayleigh–
Taylor instability �e.g., Ref. 42�. Note that the scaling used in
present work is not appropriate for �→�; to establish the
result for this case, one should consider a different scaling, or
the dimensional formulation of the problem.
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